Patents by Inventor Kazuhiko Kurusu

Kazuhiko Kurusu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11958756
    Abstract: An object of the present disclosure is to provide a thin-film-like composite of nanocrystal, as a nanocrystalline material having excellent handling properties, which can overcome the above-mentioned problems of a nanocrystalline material having a powdery form while satisfactorily maintaining the properties of the nanocrystalline material (e.g., excellent catalytic activity). A thin-film-like composite of nanocrystal, characterized in that the thin-film-like composite of nanocrystal includes a thin-film-like connected assembly in which a plurality of nanocrystalline pieces each having a flake-like form and having a main surface and an end surface are connected to each other, the main surfaces of the plurality of nanocrystalline pieces exposed to the outside of the connected assembly are arranged so as to form gaps therebetween, and the connected assembly has a plan view area of 1 mm2 or more.
    Type: Grant
    Filed: September 6, 2019
    Date of Patent: April 16, 2024
    Assignee: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshikazu Tsuzuki, Mariko Wakae, Kazuhiko Kurusu
  • Patent number: 11591235
    Abstract: The present disclosure relates to a method for producing metal oxide nanoparticles includes a first step of preparing a reaction solution containing a metal complex, an alcohol, and water; a second step of heating the reaction solution for phase-separation under a hermetically sealed atmosphere where the volumetric expansion ratio of the reaction solution reaches 5 to 15%; a third step of holding the reaction solution heated in the second step for 30 minutes or more for dehydrating the metal complex to precipitate the metal oxide nanoparticles; and a fourth step of collecting the metal oxide nanoparticles after the metal oxide nanoparticles are cooled.
    Type: Grant
    Filed: January 23, 2020
    Date of Patent: February 28, 2023
    Assignees: FURUKAWA ELECTRIC CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yoshikazu Tsuzuki, Mariko Wakae, Kazuhiko Kurusu, Hideki Abe
  • Patent number: 10682608
    Abstract: A catalyst includes: a base material; and a nanocrystalline metal oxide composite having a plurality of accumulated flake-like nanocrystalline pieces in a connected state on the surface of the base material, the flake-like nanocrystalline pieces containing a metal oxide to accumulate, wherein the nanocrystalline metal oxide composite is configured such that an end surface of at least one of the nanocrystalline pieces is connected; the nanocrystalline pieces include a plurality of stacked surfaces stacked in a direction in which a main surface becomes an uppermost stacked surface; and when metal atoms or oxygen atoms forming the metal oxide are regarded as main constituent atoms, a proportion by number of the main constituent atoms to the metal atoms and the oxygen atoms forming the metal oxide existing on each stacked surface is 80% or more, and the main constituent atoms have a specific crystal orientation which changes in each stack.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: June 16, 2020
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshikazu Tsuzuki, Kenji Iizuka, Mariko Wakae, Kazuhiko Kurusu
  • Publication number: 20200156956
    Abstract: The present disclosure relates to a method for producing metal oxide nanoparticles includes a first step of preparing a reaction solution containing a metal complex, an alcohol, and water; a second step of heating the reaction solution for phase-separation under a hermetically sealed atmosphere where the volumetric expansion ratio of the reaction solution reaches 5 to 15%; a third step of holding the reaction solution heated in the second step for 30 minutes or more for dehydrating the metal complex to precipitate the metal oxide nanoparticles; and a fourth step of collecting the metal oxide nanoparticles after the metal oxide nanoparticles are cooled.
    Type: Application
    Filed: January 23, 2020
    Publication date: May 21, 2020
    Applicants: FURUKAWA ELECTRIC CO., LTD., NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Yoshikazu TSUZUKI, Mariko WAKAE, Kazuhiko KURUSU, Hideki ABE
  • Patent number: 10584030
    Abstract: The present disclosure provides that a catalyst exhibits excellent catalytic activity in both a hydrogenation involving a hydrogen-storing body containing an aromatic compound, and a dehydrogenation involving a hydrogen-supplying body containing a hydrogen derivative of the aromatic compound, wherein the catalyst contains a nanocrystalline composite having two or more accumulated flake-like nanocrystalline pieces in a connected state, the flake-like nanocrystalline pieces each having a main surface and an end surface, and in that the nanocrystalline composite is configured such that, when two adjacent nanocrystalline pieces are viewed, an end surface of at least one of the nanocrystalline pieces is connected.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: March 10, 2020
    Assignee: Furukawa Electric Co., Ltd.
    Inventors: Yoshikazu Tsuzuki, Kenji Iizuka, Mariko Wakae, Kazuhiko Kurusu
  • Publication number: 20200017367
    Abstract: An object of the present disclosure is to provide a thin-film-like composite of nanocrystal, as a nanocrystalline material having excellent handling properties, which can overcome the above-mentioned problems of a nanocrystalline material having a powdery form while satisfactorily maintaining the properties of the nanocrystalline material (e.g., excellent catalytic activity). A thin-film-like composite of nanocrystal, characterized in that the thin-film-like composite of nanocrystal includes a thin-film-like connected assembly in which a plurality of nanocrystalline pieces each having a flake-like form and having a main surface and an end surface are connected to each other, the main surfaces of the plurality of nanocrystalline pieces exposed to the outside of the connected assembly are arranged so as to form gaps therebetween, and the connected assembly has a plan view area of 1 mm2 or more.
    Type: Application
    Filed: September 6, 2019
    Publication date: January 16, 2020
    Applicant: FURUKAWA ELECTRIC CO., LTD.
    Inventors: Yoshikazu TSUZUKI, Mariko WAKAE, Kazuhiko KURUSU
  • Publication number: 20180134550
    Abstract: The present disclosure provides that a catalyst exhibits excellent catalytic activity in both a hydrogenation involving a hydrogen-storing body containing an aromatic compound, and a dehydrogenation involving a hydrogen-supplying body containing a hydrogen derivative of the aromatic compound, wherein the catalyst contains a nanocrystalline composite having two or more accumulated flake-like nanocrystalline pieces in a connected state, the flake-like nanocrystalline pieces each having a main surface and an end surface, and in that the nanocrystalline composite is configured such that, when two adjacent nanocrystalline pieces are viewed, an end surface of at least one of the nanocrystalline pieces is connected.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 17, 2018
    Inventors: Yoshikazu Tsuzuki, Kenji Iizuka, Mariko Wakae, Kazuhiko Kurusu
  • Publication number: 20180133649
    Abstract: A catalyst includes: a base material; and a nanocrystalline metal oxide composite having a plurality of accumulated flake-like nanocrystalline pieces in a connected state on the surface of the base material, the flake-like nanocrystalline pieces containing a metal oxide to accumulate, wherein the nanocrystalline metal oxide composite is configured such that an end surface of at least one of the nanocrystalline pieces is connected; the nanocrystalline pieces include a plurality of stacked surfaces stacked in a direction in which a main surface becomes an uppermost stacked surface; and when metal atoms or oxygen atoms forming the metal oxide are regarded as main constituent atoms, a proportion by number of the main constituent atoms to the metal atoms and the oxygen atoms forming the metal oxide existing on each stacked surface is 80% or more, and the main constituent atoms have a specific crystal orientation which changes in each stack.
    Type: Application
    Filed: January 12, 2018
    Publication date: May 17, 2018
    Inventors: Yoshikazu Tsuzuki, Kenji Iizuka, Mariko Wakae, Kazuhiko Kurusu
  • Patent number: 8980428
    Abstract: Porous silicon particles and complex porous silicon particles suitable for negative electrode materials etc. for lithium-ion batteries, which achieve high capacity and good cycling characteristics, are provided. Porous silicon particles formed by the joining of a plurality of silicon microparticles, and having an average particle diameter of 0.1 ?m to 1000 ?m, a three-dimensional network structure having continuous gaps, an average porosity of 15 to 93%, and a structure in which the particles of a whole particle are uniform. Complex porous silicon particles formed by the joining of a plurality of silicon microparticles and a plurality of silicon compound particles, and characterized by containing a compound of silicon and composite elements, having an average particle diameter of 0.1 ?m to 1000 ?m, and having a three-dimensional network structure having continuous gaps.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 17, 2015
    Assignees: Furukawa Electric Co., Ltd., Tohoku Techno Arch Co., Ltd.
    Inventors: Hirokazu Yoshida, Kazutomi Miyoshi, Kazuhiko Kurusu, Toshio Tani, Koji Hataya, Takeshi Nishimura, Hidemi Kato, Takeshi Wada
  • Patent number: 8020411
    Abstract: A method of manufacturing a single mode optical fiber formed of a silica-based glass and including a glass part having a central core and a cladding region. The method including heating an optical fiber preform in a heating furnace including a first heater to melt the optical fiber preform, and fiber drawing an optical fiber from the molten optical fiber preform. The method further comprises continuously cooling the drawn optical fiber starting with a meniscus portion in which diameter is decreased from 90% of the preform diameter to 5% of the preform diameter to a portion where the drawn optical fiber has a temperature of 1,200° C. at a cooling rate of 1,000 to 3,000° C. /sec.
    Type: Grant
    Filed: August 8, 2005
    Date of Patent: September 20, 2011
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hideya Moridaira, Kazuhiko Kurusu, Yoshihiro Inoue
  • Patent number: 7164831
    Abstract: An optical fiber having a small increase in loss at a wavelength of approximately 1400 nm involved in a deuterium treatment is provided, and an evaluation method to decide whether an optical fiber is that having such a loss increase, and a fabrication method of an optical fiber having a small increase in such a loss are also provided. An optical fiber according to the present invention comprises a core composed of a silica glass doped with at least germanium and a cladding composed of a silica glass surrounding it. The optical fiber is exposed to an atmosphere containing hydrogen or deuterium to diffuse hydrogen molecules or deuterium molecules in the optical fiber, and after that, the outer periphery of the glass region of the optical fiber is etched to an outer diameter of 50 ?m, and then the electron spin density of PORs is 1×1013 spins/g or less when the glass region is measured by the electron-spin resonance method.
    Type: Grant
    Filed: July 12, 2005
    Date of Patent: January 16, 2007
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kazuhiko Kurusu, Hideya Moridaira, Yoshinori Ishida
  • Patent number: 7142755
    Abstract: An optical fiber characterized by a cutoff wavelength of 1310 nm or less, a transmission loss of 0.40 dB/km or less at the wavelength of 1385 nm before hydrogen ageing, a transmission loss of 0.40 dB/km or less in the wavelength range of 1310 nm to 1625 nm after hydrogen ageing, and an electron spin density of the Non-Bridging Oxygen Hole Center of 1×1013 spins/g or less measured by the electron spin resonance method after the diameter of the optical fiber is made to be about 50 ?m by etching in diluted hydrofluoric acid, that having high reliability of hydrogen-proof characteristic suitable for WDM transmission in 1310 nm to 1625 nm and the method of evaluating the optical fiber are offered.
    Type: Grant
    Filed: May 19, 2005
    Date of Patent: November 28, 2006
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kazuhiko Kurusu, Hideya Moridaira, Masahide Kuwabara, Yoshinori Ishida
  • Publication number: 20060013546
    Abstract: An optical fiber having a small increase in loss at a wavelength of approximately 1400 nm involved in a deuterium treatment is provided, and an evaluation method to decide whether an optical fiber is that having such a loss increase, and a fabrication method of an optical fiber having a small increase in such a loss are also provided. An optical fiber according to the present invention comprises a core composed of a silica glass doped with at least germanium and a cladding composed of a silica glass surrounding it. The optical fiber is exposed to an atmosphere containing hydrogen or deuterium to diffuse hydrogen molecules or deuterium molecules in the optical fiber, and after that, the outer periphery of the glass region of the optical fiber is etched to an outer diameter of 50 ?m, and then the electron spin density of PORs is 1×1013 spins/g or less when the glass region is measured by the electron-spin resonance method.
    Type: Application
    Filed: July 12, 2005
    Publication date: January 19, 2006
    Applicant: THE FURUKAWA ELECTRIC CO., LTD.
    Inventors: Kazuhiko Kurusu, Hideya Moridaira, Yoshinori Ishida
  • Publication number: 20050274151
    Abstract: In a single mode optical fiber formed of a silica-based glass and including a glass part having a central core and a cladding region, the density of non bridging oxygen hole center in the glass part is not higher than 1.0×1014 spins/g in terms of the spin density measured by an electron spin resonance method.
    Type: Application
    Filed: August 8, 2005
    Publication date: December 15, 2005
    Inventors: Hideya Moridaira, Kazuhiko Kurusu, Yoshihiro Inoue
  • Patent number: 6954572
    Abstract: In a single mode optical fiber formed of a silica-based glass and including a glass part having a central core and a cladding region, the density of non bridging oxygen hole center in the glass part is not higher than 1.0×1014 spins/g in terms of the spin density measured by an electron spin resonance method.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: October 11, 2005
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Hideya Moridaira, Kazuhiko Kurusu, Yoshihiro Inoue
  • Publication number: 20050220430
    Abstract: An optical fiber characterized by a cutoff wavelength of 1310 nm or less, a transmission loss of 0.40 dB/km or less at the wavelength of 1385 nm before hydrogen ageing, a transmission loss of 0.40 dB/km or less in the wavelength range of 1310 nm to 1625 nm after hydrogen ageing, and an electron spin density of the Non-Bridging Oxygen Hole Center of 1×1013 spins/g or less measured by the electron spin resonance method after the diameter of the optical fiber is made to be about 50 ?m by etching in diluted hydrofluoric acid, that having high reliability of hydrogen-proof characteristic suitable for WDM transmission in 1310 nm to 1625 nm and the method of evaluating the optical fiber are offered.
    Type: Application
    Filed: May 19, 2005
    Publication date: October 6, 2005
    Applicant: The Furukawa Electric Co., Ltd.
    Inventors: Kazuhiko Kurusu, Hideya Moridaira, Masahide Kuwabara, Yoshinori Ishida
  • Patent number: 6944381
    Abstract: An optical fiber characterized by a cutoff wavelength of 1310 nm or less, a transmission loss of 0.40 dB/km or less at the wavelength of 1385 nm before hydrogen ageing, a transmission loss of 0.40 dB/km or less in the wavelength range of 1310 nm to 1625 nm after hydrogen ageing, and an electron spin density of the Non-Bridging Oxygen Hole Center of 1×1013spins/g or less measured by the electron spin resonance method after the diameter of the optical fiber is made to be about 50 ?m by etching in diluted hydrofluoric acid, that having high reliability of hydrogen-proof characteristic suitable for WDM transmission in 1310 nm to 1625 nm and the method of evaluating the optical fiber are offered.
    Type: Grant
    Filed: April 11, 2003
    Date of Patent: September 13, 2005
    Assignee: The Furukawa Electric Co., Ltd.
    Inventors: Kazuhiko Kurusu, Hideya Moridaira, Masahide Kuwabara, Yoshinori Ishida
  • Publication number: 20040047576
    Abstract: An optical fiber characterized by a cutoff wavelength of 1310 nm or less, a transmission loss of 0.40 dB/km or less at the wavelength of 1385 nm before hydrogen ageing, a transmission loss of 0.40 dB/km or less in the wavelength range of 1310 nm to 1625 nm after hydrogen ageing, and an electron spin density of the Non-Bridging Oxygen Hole Center of 1×10 13 spins/g or less measured by the electron spin resonance method after the diameter of the optical fiber is made to be about 50 &mgr;m by etching in diluted hydrofluoric acid, that having high reliability of hydrogen-proof characteristic suitable for WDM transmission in 1310 nm to 1625 nm and the method of evaluating the optical fiber are offered.
    Type: Application
    Filed: April 11, 2003
    Publication date: March 11, 2004
    Inventors: Kazuhiko Kurusu, Hideya Moridaira, Masahide Kuwabara, Yoshinori Ishida
  • Publication number: 20030086670
    Abstract: In a single mode optical fiber formed of a silica-based glass and including a glass part having a central core and a cladding region, the density of non bridging oxygen hole center in the glass part is not higher than 1.0×1014 spins/g in terms of the spin density measured by an electron spin resonance method.
    Type: Application
    Filed: May 28, 2002
    Publication date: May 8, 2003
    Inventors: Hideya Moridaira, Kazuhiko Kurusu, Yoshihiro Inoue