Patents by Inventor Kazuhiko Ohtsuka

Kazuhiko Ohtsuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7658102
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: February 9, 2010
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Patent number: 7574909
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 18, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Patent number: 7568388
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 4, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Patent number: 7568387
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: August 4, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Patent number: 7562569
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Grant
    Filed: September 12, 2008
    Date of Patent: July 21, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Patent number: 7487674
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: February 10, 2009
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Publication number: 20090013777
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Application
    Filed: September 12, 2008
    Publication date: January 15, 2009
    Inventors: Kazuhiko OHTSUKA, Yuji Ariyoshi
  • Publication number: 20090007657
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Application
    Filed: September 12, 2008
    Publication date: January 8, 2009
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Publication number: 20090007656
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Application
    Filed: September 12, 2008
    Publication date: January 8, 2009
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Publication number: 20090007655
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Application
    Filed: September 12, 2008
    Publication date: January 8, 2009
    Inventors: Kazuhiko OHTSUKA, Yuji Ariyoshi
  • Publication number: 20090007658
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Application
    Filed: September 12, 2008
    Publication date: January 8, 2009
    Inventors: Kazuhiko OHTSUKA, Yuji Ariyoshi
  • Publication number: 20080178669
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Application
    Filed: January 14, 2008
    Publication date: July 31, 2008
    Inventors: Kazuhiko OHTSUKA, Yuji Ariyoshi
  • Patent number: 7367439
    Abstract: The electromagnetic clutch comprises a rotor connected to a drive source, an inner hub connected to a device that follows, an outer plate provided on the outside of the inner hub so as to enclose it, an armature coupled to the outer plate and opposing the rotor, an elastic member provided between the inner hub and the outer plate and adhered thereto, and an electromagnetic coil for, when magnetized, attracting the armature together with the outer plate to make them come into contact with the rotor, and when demagnetized, separating the outer plate and the armature from the rotor. Because of the configuration in which the armature and the outer plate are coupled in a heat-transmissible manner, a part of elastic member is formed so that heat is transmitted from at least a part of the armature to the part of the elastic member as if they are one piece.
    Type: Grant
    Filed: May 31, 2005
    Date of Patent: May 6, 2008
    Assignee: Denso Corporation
    Inventors: Kazuhiko Ohtsuka, Yasuo Tabuchi, Toshihiro Hayashi
  • Patent number: 7360445
    Abstract: A flow sensor need not have any special terminal for voltage value supply, and can obtain a ratiometric output function at low cost and small size. A calculation circuit calculates, as a reference voltage Vr, a voltage value Vref of an A/D conversion reference power supply in a fuel injection control unit from a terminal voltage of a temperature sensor, and supplies the reference voltage Vr thus calculated by the calculation circuit to a ratiometric output circuit. As a result, a ratiometric output function can be achieved while making it unnecessary a special terminal used only for the purpose of supplying the voltage value Vref.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: April 22, 2008
    Assignee: Mitsubishi Electric Corporation
    Inventors: Kazuhiko Ohtsuka, Masahiro Kawai
  • Publication number: 20080077334
    Abstract: A flow sensor need not have any special terminal for voltage value supply, and can obtain a ratiometric output function at low cost and small size. A calculation circuit calculates, as a reference voltage Vr, a voltage value Vref of an A/D conversion reference power supply in a fuel injection control unit from a terminal voltage of a temperature sensor, and supplies the reference voltage Vr thus calculated by the calculation circuit to a ratiometric output circuit. As a result, a ratiometric output function can be achieved while making it unnecessary a special terminal used only for the purpose of supplying the voltage value Vref.
    Type: Application
    Filed: February 14, 2007
    Publication date: March 27, 2008
    Applicant: MITSUBISHI ELECTRIC CORPORATION
    Inventors: Kazuhiko Ohtsuka, Masahiro Kawai
  • Patent number: 7325449
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: February 5, 2008
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Publication number: 20070113643
    Abstract: A thermal flow sensor can adjust the temperature of a heating element in a highly precise and reliable manner with the use of simple circuits, devices and process steps. The sensor includes an amplifier section (7) that amplifies a voltage across opposite ends of at least one of resistors (3, 4, 5) that constitute a bridge circuit, a current control section (9) that is controlled based on an output voltage of the amplifier section (7), and an output terminal (14) that is connected to one end of a heating element (1) that is controlled to be energized by the current control section (9). The amplifier section (7) includes an amplification factor control section for controlling an amplification factor by an electric signal from a computer, and uses an output voltage which has been amplified and impressed to an input voltage to an operational amplifier (8).
    Type: Application
    Filed: May 1, 2006
    Publication date: May 24, 2007
    Inventors: Kazuhiko Ohtsuka, Yuji Ariyoshi
  • Publication number: 20050269183
    Abstract: The electromagnetic clutch comprises a rotor connected to a drive source, an inner hub connected to a device that follows, an outer plate provided on the outside of the inner hub so as to enclose it, an armature coupled to the outer plate and opposing the rotor, an elastic member provided between the inner hub and the outer plate and adhered thereto, and an electromagnetic coil for, when magnetized, attracting the armature together with the outer plate to make them come into contact with the rotor, and when demagnetized, separating the outer plate and the armature from the rotor. Because of the configuration in which the armature and the outer plate are coupled in a heat-transmissible manner, a part of elastic member is formed so that heat is transmitted from at least a part of the armature to the part of the elastic member as if they are one piece.
    Type: Application
    Filed: May 31, 2005
    Publication date: December 8, 2005
    Applicant: DENSO Corporation
    Inventors: Kazuhiko Ohtsuka, Yasuo Tabuchi, Toshihiro Hayashi