Patents by Inventor Kazuhiro Atsumi

Kazuhiro Atsumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20070125757
    Abstract: A laser processing method which can accurately cut an object to be processed along a line to cut is provided. A modified region 7 formed by multiphoton absorption forms a cutting start region 8 within an object to be processed 1 along a line to cut 5. Thereafter, the object 1 is irradiated with laser light L2 absorbable by the object 1 along the line to cut 5, so as to generate fractures 24 from the cutting start region 8 acting as a start point, whereby the object 1 can accurately be cut along the line to cut 5. Expanding an expandable film 19 having the object 1 secured thereto separates individual chips 25 from each other, which can further improve the reliability in cutting the object 1 along the line to cut 5.
    Type: Application
    Filed: March 12, 2003
    Publication date: June 7, 2007
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20070085099
    Abstract: A semiconductor substrate cutting method which can efficiently cut a semiconductor substrate having a front face formed with a functional device together with a die bonding resin layer is provided. A wafer 11 having a front face 3 formed with a functional device 15 is irradiated with laser light L while positioning a light-converging point P within the wafer 11 with the rear face 17 of the wafer 11 acting as a laser light incident face, so as to generate multiphoton absorption, thereby forming a starting point region for cutting 8 due to a molten processed region 13 within the wafer 11 along a line along which the substrate should be cut 5. Consequently, a fracture can be generated from the starting point region for cutting 8 naturally or with a relatively small force, so as to reach the front face 3 and rear face 17.
    Type: Application
    Filed: September 9, 2004
    Publication date: April 19, 2007
    Inventors: Kenshi Fukumitsu, Fumitsugu Fukuyo, Naoki Uchiyama, Ryuji Sugiura, Kazuhiro Atsumi
  • Publication number: 20060255024
    Abstract: A laser processing method which can accurately cut an object to be processed along a line to cut is provided. A modified region 7 formed by multiphoton absorption forms a cutting start region 8 within an object to be processed 1 along a line 5 along which the object is intended to be cut. Thereafter, the object 1 is irradiated with laser light L2 transmittable through an unmodified region of the object 1, so as to generate fractures 24 from the cutting start region 8 acting as a start point, whereby the object 1 can accurately be cut along the line 5 along which the object is intended to be cut. Expanding an expandable film 19 having the object 1 secured thereto separates individual chips 25 from each other, which can further improve the reliability in cutting the object 1 along the line 5 along which the object is intended to be cut.
    Type: Application
    Filed: March 12, 2003
    Publication date: November 16, 2006
    Inventors: Fumitsufu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20060040473
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: October 17, 2005
    Publication date: February 23, 2006
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20050194364
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: April 15, 2005
    Publication date: September 8, 2005
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20050189330
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: April 15, 2005
    Publication date: September 1, 2005
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20050184037
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: April 15, 2005
    Publication date: August 25, 2005
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20050181581
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: April 15, 2005
    Publication date: August 18, 2005
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20050173387
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: April 8, 2005
    Publication date: August 11, 2005
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Publication number: 20040002199
    Abstract: A laser beam machining method and a laser beam machining device capable of cutting a work without producing a fusing and a cracking out of a predetermined cutting line on the surface of the work, wherein a pulse laser beam is radiated on the predetermined cut line on the surface of the work under the conditions causing a multiple photon absorption and with a condensed point aligned to the inside of the work, and a modified area is formed inside the work along the predetermined determined cut line by moving the condensed point along the predetermined cut line, whereby the work can be cut with a rather small force by cracking the work along the predetermined cut line starting from the modified area and, because the pulse laser beam radiated is not almost absorbed onto the surface of the work, the surface is not fused even if the modified area is formed.
    Type: Application
    Filed: March 12, 2003
    Publication date: January 1, 2004
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama, Toshimitsu Wakuda, Kazuhiro Atsumi, Kenichi Muramatsu
  • Patent number: 6161878
    Abstract: An external cover pipe is adapted to be fixedly fitted over a fluid transport pipe made of synthetic resin via an elastic seal. The cover pipe includes a plurality of split pipe members divided in the peripheral direction of the pipe which cooperate to compress the elastic seal in association with a fastening operation of a fastener for fastening and joining together the split pipe members disposed adjacent each other in the peripheral direction. Each split pipe member includes, in an inner peripheral face thereof, a deformation limiting face for coming into contact with an outer peripheral face of the fluid transport pipe in association with the fastening operation of the fastener so as to limit radial deformation of the fluid transport pipe. This deformation limiting face is provided at a portion in the inner peripheral face of the split pipe member located at a position axially offset toward an extreme axial end of the external cover pipe away from a portion thereof where the elastic seal is attached.
    Type: Grant
    Filed: August 26, 1998
    Date of Patent: December 19, 2000
    Assignee: Waterworks Technology Development Organization Co., Ltd.
    Inventors: Kazuhiro Atsumi, Kikuo Saito, Yasushi Shimonaka, Tamotsu Maenishi
  • Patent number: 5637874
    Abstract: The present invention provides a chemiluminescence measuring apparatus which is small in size and high in operability and has a function of performing accurate quantitative analysis and the like. The apparatus includes at least a box-like housing having an opening, a cover provided on a top surface of the housing and having a through hole for introducing a first detachable vessel into the inner space of the housing, a holder having a concave portion and enclosing the opening of the housing, the hollow chamber having an opening at a side wall thereof and partially housing a second vessel, a photo-sensing unit for detecting luminescence from the second vessel via the through hole of the hollow chamber, and a shutter mechanism for intermittently cutting optical path between the photo-sensing unit and the second vessel.
    Type: Grant
    Filed: February 23, 1995
    Date of Patent: June 10, 1997
    Assignee: Biosensor Laboratories Co., Ltd.
    Inventors: Katsu Honzawa, Kazuhiro Atsumi, Fumihiko Shimomura, Masayuki Masuko, Tsuyoshi Hayakawa
  • Patent number: 5576212
    Abstract: An oxidizing composition in the form of powder for oxidizing a chemiluminescent substance, including an oxidizing agent and a binder.
    Type: Grant
    Filed: November 9, 1994
    Date of Patent: November 19, 1996
    Assignee: Biosensor Laboratories Co., Ltd.
    Inventors: Katsu Honzawa, Seiji Kawaguchi, Kazuhiro Atsumi, Fumihiko Shimomura, Takahiko Ishiguro, Hisaya Motojima
  • Patent number: 5523845
    Abstract: The first branch 1a of the optical fiber 1 is connected to the light source 2, and the second branch 1b is connected to the optical measuring unit 3. A taper-shaped tip member 8 is fitted to a tip end of the optical fiber unit 1 with the use of a jig member 4. The inner hollow space 7 in the tip member 8 is connected with the air suction device 11, through the gap 5 formed between the optical fiber unit 1 and the jig member 4 and the air suction tube 10. The air suction device 11 discharges air from the inner hollow space 7 to suck liquid through the through-hole 6 into the inner hollow space. The air suction device 11 is controlled by the controller 12. Because the optical fiber unit can directly irradiate liquid with light, measurement can be performed with high sensitivity. The optical fiber unit is prevented from contamination.
    Type: Grant
    Filed: January 25, 1995
    Date of Patent: June 4, 1996
    Assignee: Biosensor Laboratories Co., Ltd.
    Inventors: Katsu Honzawa, Kazuhiro Atsumi, Humihiko Shimomura, Seiji Kawaguchi, Yuichiro Sakamoto, Hisaya Motojima, Masayuki Masuko, Tsuyoshi Hayakawa