Patents by Inventor Kazuhiro Nagatsu

Kazuhiro Nagatsu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11834981
    Abstract: To meet both a request to improve the thermal efficiency in the medium load operation of an engine and a request to suppress knocking in the high load and high rotation operation of the engine, the engine includes a main combustion chamber including a cylinder block, a cylinder head, and a piston; a pre-chamber having a plurality of injection holes that are open into the main combustion chamber; and a spark plug that ignites an air-fuel mixture in the pre-chamber. A compression ratio of the main combustion chamber is not less than 14 and not more than 24. A second index that is a product between a volume of the pre-chamber and the compression ratio is not less than 1.03 cm3 and not more than 5.92 cm3.
    Type: Grant
    Filed: November 16, 2022
    Date of Patent: December 5, 2023
    Assignee: Mazda Motor Corporation
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Masayuki Kidokoro, Kazuhiro Nagatsu
  • Patent number: 11753985
    Abstract: To meet both a request to improve the thermal efficiency in the medium load operation of an engine and a request to suppress knocking in the high load and high rotation operation of the engine, the engine includes a main combustion chamber comprising a cylinder block, a cylinder head, and a piston; a pre-chamber having a plurality of injection holes that open into the main combustion chamber; and a spark plug that ignites an air-fuel mixture in the pre-chamber. A compression ratio of the main combustion chamber is not less than 14 and not more than 24. A first index, which is the product between a total cross-sectional area of the plurality of injection holes and the compression ratio, is not less than 0.1496 cm2 and not more than 0.8449 cm2.
    Type: Grant
    Filed: November 15, 2022
    Date of Patent: September 12, 2023
    Assignee: Mazda Motor Corporation
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Masayuki Kidokoro, Kazuhiro Nagatsu
  • Publication number: 20230175425
    Abstract: To effectively suppress strong knock that occurs in the operating region of high load and high rotation in a specific engine having a pre-chamber in a combustion chamber, the engine includes a piston that defines a combustion chamber together with a cylinder block and a cylinder head. The combustion chamber includes a sub-chamber and a main chamber separated from the sub-chamber by a pre-chamber. The specific ratio obtained by dividing a volume of the sub-chamber by a stroke volume of a cylinder is greater than or equal to 0.00005 and less than or equal to 0.00045.
    Type: Application
    Filed: November 18, 2022
    Publication date: June 8, 2023
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Masayuki Kidokoro, Kazuhiro Nagatsu
  • Publication number: 20230175427
    Abstract: To meet both a request to improve the thermal efficiency in the medium load operation of an engine and a request to suppress knocking in the high load and high rotation operation of the engine, the engine includes a main combustion chamber including a cylinder block, a cylinder head, and a piston; a pre-chamber having a plurality of injection holes that are open into the main combustion chamber; and a spark plug that ignites an air-fuel mixture in the pre-chamber. A compression ratio of the main combustion chamber is not less than 14 and not more than 24. A second index that is a product between a volume of the pre-chamber and the compression ratio is not less than 1.03 cm3 and not more than 5.92 cm3.
    Type: Application
    Filed: November 16, 2022
    Publication date: June 8, 2023
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Masayuki Kidokoro, Kazuhiro Nagatsu
  • Publication number: 20230175426
    Abstract: To meet both a request to improve the thermal efficiency in the medium load operation of an engine and a request to suppress knocking in the high load and high rotation operation of the engine, the engine includes a main combustion chamber comprising a cylinder block, a cylinder head, and a piston; a pre-chamber having a plurality of injection holes that open into the main combustion chamber; and a spark plug that ignites an air-fuel mixture in the pre-chamber. A compression ratio of the main combustion chamber is not less than 14 and not more than 24. A first index, which is the product between a total cross-sectional area of the plurality of injection holes and the compression ratio, is not less than 0.1496 cm2 and not more than 0.8449 cm2.
    Type: Application
    Filed: November 15, 2022
    Publication date: June 8, 2023
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Masayuki Kidokoro, Kazuhiro Nagatsu
  • Publication number: 20230175429
    Abstract: To effectively suppress strong knock that occurs in the operating region of high load and high rotation in a specific engine having a pre-chamber in a combustion chamber, the engine includes a piston that defines a combustion chamber together with a cylinder block and a cylinder head. The combustion chamber 6 includes a sub-chamber and a main chamber separated from the sub-chamber by a pre-chamber having through-holes. The specific ratio obtained by dividing the ratio ?p/Vpc of a hole diameter ?p of the through-holes to a volume Vpc of the sub-chamber by a compression ratio is greater than or equal to 0.26 mm/cm3 and less than or equal to 2.30 mm/cm3.
    Type: Application
    Filed: November 21, 2022
    Publication date: June 8, 2023
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Kazuhiro Nagatsu
  • Publication number: 20230175428
    Abstract: To effectively suppress strong knock that occurs in the operating region of high load and high rotation in a specific engine having a pre-chamber in a combustion chamber, the engine includes a piston that defines a combustion chamber together with a cylinder block and a cylinder head. The combustion chamber includes a sub-chamber and a main chamber separated from the sub-chamber by a pre-chamber. The specific ratio obtained by dividing a bore/stroke ratio of a cylinder by the volume of the sub-chamber is greater than or equal to 6.6 cm?3 and less than or equal to 57.6 cm?3.
    Type: Application
    Filed: November 17, 2022
    Publication date: June 8, 2023
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Masayuki Kidokoro, Kazuhiro Nagatsu
  • Patent number: 11655751
    Abstract: To effectively suppress strong knock that occurs in the operating region of high load and high rotation in a specific engine having a pre-chamber in a combustion chamber, the engine includes a piston that defines a combustion chamber together with a cylinder block and a cylinder head. The combustion chamber includes a sub-chamber and a main chamber separated from the sub-chamber by a pre-chamber. The specific ratio obtained by dividing a volume of the sub-chamber by a stroke volume of a cylinder is greater than or equal to 0.00005 and less than or equal to 0.00045.
    Type: Grant
    Filed: November 18, 2022
    Date of Patent: May 23, 2023
    Assignee: Mazda Motor Corporation
    Inventors: Yuji Harada, Kenji Uchida, Ryohei Ono, Masayuki Kidokoro, Kazuhiro Nagatsu
  • Patent number: 11208968
    Abstract: An engine system includes an engine, a main combustion chamber formed by a cylinder head and a piston, an auxiliary chamber formed with a communicating hole communicating with the main combustion chamber, an injector configured to inject fuel into the main combustion chamber, an ignition plug provided to the auxiliary chamber and configured to ignite a mixture gas inside the auxiliary chamber, an accelerator opening sensor, and a control device. The control device controls the injector so that an air-fuel ratio of the mixture gas inside the auxiliary chamber becomes a first air-fuel ratio when an engine load range is a first range, and the air-fuel ratio of the mixture gas inside the auxiliary chamber becomes a second air-fuel ratio leaner than the first air-fuel ratio when the engine load range is a second range where the engine load is higher than in the first range.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: December 28, 2021
    Assignee: Mazda Motor Corporation
    Inventors: Kazuhiro Nagatsu, Hirotaka Suzuki, Yuji Harada, Hiroyuki Yamashita, Ryohei Ono, Kenji Uchida
  • Publication number: 20210222643
    Abstract: An engine system includes an engine, a main combustion chamber formed by a cylinder head and a piston, an auxiliary chamber formed with a communicating hole communicating with the main combustion chamber, an injector configured to inject fuel into the main combustion chamber, an ignition plug provided to the auxiliary chamber and configured to ignite a mixture gas inside the auxiliary chamber, an accelerator opening sensor, and a control device. The control device controls the injector so that an air-fuel ratio of the mixture gas inside the auxiliary chamber becomes a first air-fuel ratio when an engine load range is a first range, and the air-fuel ratio of the mixture gas inside the auxiliary chamber becomes a second air-fuel ratio leaner than the first air-fuel ratio when the engine load range is a second range where the engine load is higher than in the first range.
    Type: Application
    Filed: December 22, 2020
    Publication date: July 22, 2021
    Inventors: Kazuhiro Nagatsu, Hirotaka Suzuki, Yuji Harada, Hiroyuki Yamashita, Ryohei Ono, Kenji Uchida
  • Patent number: 10337427
    Abstract: A control device for a compression self-ignition combustion engine is provided, which includes a variable valve operating system configured to introduce internal exhaust gas recirculation (EGR) gas into a combustion chamber, a boosting system configured to boost intake air, a controller configured to control the valve operating system, and a sensor connected to the controller and configured to detect a parameter related to an operating state of the engine. An operation mode of the valve operating system is switchable between first and second modes. The boosting system boosts the intake air when an engine load is higher than a given load, and does not boost when lower than the given load. When the engine load is high, the controller controls the valve operating system to operate in the first mode, and when the load is low, the controller controls the valve operating system to operate in the second mode.
    Type: Grant
    Filed: January 11, 2018
    Date of Patent: July 2, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Kazuhiro Nagatsu, Takashi Kaminaga, Toru Miyamoto, Mingzhao Xie
  • Patent number: 10309294
    Abstract: An engine includes: a piston including a cavity; a cylinder head configured so as to form a combustion chamber having a pent roof shape; a fuel injection valve configured to inject fuel from a second half of a compression stroke until a first half of an expansion stroke; and a spark plug arranged at a position corresponding to an upper side of the cavity. Injection openings which are arranged in a circumferential direction surrounding a longitudinal axis of the valve and through each of which the fuel is injected in a direction inclined relative to the longitudinal axis by a predetermined angle is formed such that when a height of a ceiling of the combustion chamber at a position corresponding to an edge end portion of the cavity in an injection direction of the injection opening is large, the injection angle of the injection opening is large.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: June 4, 2019
    Assignees: MAZDA MOTOR CORPORATION, DENSO CORPORATION
    Inventors: Takayuki Hikita, Masahisa Yamakawa, Tomonori Urushihara, Kazuhiro Nagatsu, Tatsuya Fujikawa, Takashi Youso, Takaaki Nagano, Yuuki Kawai, Toshifumi Hayami
  • Patent number: 10280831
    Abstract: An engine includes: a piston including a cavity; a cylinder head configured to form a combustion chamber having a pent roof shape; a fuel injection valve configured to inject fuel from a second half of a compression stroke until a first half of an expansion stroke; and a spark plug arranged at a position corresponding to an upper side of the cavity. Injection openings are arranged in a circumferential direction surrounding a longitudinal axis of the valve. The combustion chamber at a compression top dead center is divided into a plurality of fuel injection regions, located in respective injection directions of the injection openings, by vertical surfaces extending radially from the longitudinal axis through a middle between adjacent injection openings. When a volume of the fuel injection region located in the injection direction of the injection opening is large, an opening area of the injection opening is large.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: May 7, 2019
    Assignee: Mazda Motor Corporation
    Inventors: Takayuki Hikita, Masahisa Yamakawa, Tomonori Urushihara, Kazuhiro Nagatsu, Tatsuya Fujikawa, Takashi Youso, Takaaki Nagano, Yuuki Kawai, Toshifumi Hayami
  • Publication number: 20180283296
    Abstract: A control device for a compression self-ignition combustion engine is provided, which includes a variable valve operating system configured to introduce internal exhaust gas recirculation (EGR) gas into a combustion chamber, a boosting system configured to boost intake air, a controller configured to control the valve operating system, and a sensor connected to the controller and configured to detect a parameter related to an operating state of the engine. An operation mode of the valve operating system is switchable between first and second modes. The boosting system boosts the intake air when an engine load is higher than a given load, and does not boost when lower than the given load. When the engine load is high, the controller controls the valve operating system to operate in the first mode, and when the load is low, the controller controls the valve operating system to operate in the second mode.
    Type: Application
    Filed: January 11, 2018
    Publication date: October 4, 2018
    Inventors: Kazuhiro Nagatsu, Takashi Kaminaga, Toru Miyamoto, Mingzhao Xie
  • Publication number: 20180258884
    Abstract: An engine includes: a piston including a cavity; a cylinder head configured so as to form a combustion chamber having a pent roof shape; a fuel injection valve configured to inject fuel in a period from a second half of a compression stroke until a first half of an expansion stroke; and a spark plug arranged at a position corresponding to an upper side of the cavity. Injection openings which are arranged in a circumferential direction surrounding a longitudinal axis of the valve and through each of which the fuel is injected in a direction inclined relative to the longitudinal axis by a predetermined angle is formed such that when a height of a ceiling of the combustion chamber at a position corresponding to an edge end portion of the cavity in an injection direction of the injection opening is large, the injection angle of the injection opening is large.
    Type: Application
    Filed: September 23, 2016
    Publication date: September 13, 2018
    Inventors: Takayuki Hikita, Masahisa Yamakawa, Tomonori Urushihara, Kazuhiro Nagatsu, Tatsuya Fujikawa, Takashi Youso, Takaaki Nagano, Yuuki Kawai, Toshifumi Hayami
  • Publication number: 20180252151
    Abstract: An engine includes: a piston including a cavity; a cylinder head configured to form a combustion chamber having a pent roof shape; a fuel injection valve configured to inject fuel from a second half of a compression stroke until a first half of an expansion stroke; and a spark plug arranged at a position corresponding to an upper side of the cavity. Injection openings are arranged in a circumferential direction surrounding a longitudinal axis of the valve. The combustion chamber at a compression top dead center is divided into a plurality of fuel injection regions, located in respective injection directions of the injection openings, by vertical surfaces extending radially from the longitudinal axis through a middle between adjacent injection openings. When a volume of the fuel injection region located in the injection direction of the injection opening is large, an opening area of the injection opening is large.
    Type: Application
    Filed: September 23, 2016
    Publication date: September 6, 2018
    Inventors: Takayuki Hikita, Masahisa Yamakawa, Tomonori Urushihara, Kazuhiro Nagatsu, Tatsuya Fujikawa, Takashi Youso, Takaaki Nagano, Yuuki Kawai, Toshifumi Hayami
  • Patent number: 10012134
    Abstract: Injection of the fuel by the injector 43 creates a gas flow in the combustion chamber. The gas expands in a radial fashion from an axis of a cylinder toward a radial outside of the cylinder, and then flows from the radial outside along the cylinder head bottom face 221 toward the axis of the cylinder. The spark plug 41 has a gap positioned away from the axis of the cylinder toward the radial outside of the cylinder at a predetermined distance, and placed radially inwardly from a position opposite a rim of an opening of the cavity 242. A side electrode extends to be oriented in a direction perpendicular to the flow of the gas along the cylinder head bottom face. The gap has a center positioned near the cylinder head bottom face, and closer to an interior of a combustion chamber than to the cylinder head bottom face.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: July 3, 2018
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Mitsunori Wasada, Tsuyoshi Yamamoto, Yasushi Nakahara, Takashi Youso, Hiroaki Abe, Takaaki Nagano, Atsushi Inoue, Kazuhiro Nagatsu, Takashi Kaminaga, Tatsuya Fujikawa
  • Patent number: 9932883
    Abstract: A controller injects fuel into a cylinder at a high fuel pressure of 30 MPa or higher, at least in a period between a terminal stage of a compression stroke and an initial stage of an expansion stroke when an operating mode of an engine body is at least in a first specified sub-range of a low load range, and at least in a second specified sub-range of a high load range. The controller sets an EGR ratio in the first specified sub-range to be higher than an EGR ratio in the second specified sub-range, and advances start of fuel injection in the first specified sub-range to start of fuel injection in the second specified sub-range.
    Type: Grant
    Filed: August 26, 2013
    Date of Patent: April 3, 2018
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Kouhei Iwai, Masahisa Yamakawa, Kazuhiro Nagatsu, Takashi Youso, Keiji Araki
  • Patent number: 9874169
    Abstract: A control device of a compression-ignition engine is provided. The device includes an engine having a cylinder, a fuel injection valve for injecting a fuel, an exhaust valve mechanism for switching an operation mode of an exhaust valve between a normal mode and an open-twice mode, a throttle valve disposed on an intake passage, and a controller for operating the engine by compression-ignition combustion of mixture gas inside the cylinder at least within a low engine load range. The controller suspends the fuel injection by the fuel injection valve when a predetermined fuel cut condition is met while the engine decelerates, and the controller fully closes the throttle valve and controls the exhaust valve mechanism to operate in the open-twice mode during the fuel cut. When a predetermined fuel resuming condition is met, the controller restarts the fuel injection, opens the throttle valve, and causes the compression-ignition combustion.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: January 23, 2018
    Assignee: Mazda Motor Corporation
    Inventors: Kazuhiro Nagatsu, Junichi Taga, Atsushi Inoue, Takashi Youso, Mitsunori Wasada, Keiji Araki
  • Patent number: 9850828
    Abstract: A control device for a compression ignition engine includes a controller configured to operate an engine body by compression ignition combustion when the engine body operates in a compression ignition range. When the engine body operates in a low load range with a load lower than a predetermined load in the compression ignition range, the controller sets a time of fuel injection with the fuel injection valve in a first half of a compression stroke or earlier, and allows the ozonator to introduce the ozone into the cylinder. When the engine body operates in the low load range, the controller controls an ozone concentration to be lower at a higher speed than at a low speed.
    Type: Grant
    Filed: October 23, 2014
    Date of Patent: December 26, 2017
    Assignee: MAZDA MOTOR CORPORATION
    Inventors: Kazuhiro Nagatsu, Atsushi Inoue, Kota Matsumoto, Takashi Kaminaga, Toru Miyamoto, Takashi Youso