Patents by Inventor Kazuhiro Natsuaki

Kazuhiro Natsuaki has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10847668
    Abstract: An avalanche photodiode includes a first-conductivity-type semiconductor layer; a first second-conductivity-type semiconductor layer; a second second-conductivity-type semiconductor layer; a third second-conductivity-type semiconductor layer; a fourth second-conductivity-type semiconductor layer; a fifth second-conductivity-type semiconductor layer. The first-conductivity-type semiconductor layer and the second second-conductivity-type semiconductor layer form an avalanche junction. The first and third second-conductivity-type semiconductor layers are electrically connected together via the fourth second-conductivity-type semiconductor layer such that the semiconductor substrate and the first-conductivity-type semiconductor layer are electrically isolated from each other.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: November 24, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Takahiro Takimoto, Kazuhiro Natsuaki, Masayo Uchida
  • Publication number: 20200259038
    Abstract: An avalanche photodiode includes: a first semiconductor layer of a first conductivity type formed on a substrate of the first conductivity type; a second semiconductor layer of a second conductivity type formed under the first semiconductor layer; a third semiconductor layer of the first conductivity type formed in a shallow portion of the first semiconductor layer on the substrate, the third semiconductor layer having a higher concentration than an impurity concentration of the first semiconductor layer; a fourth semiconductor layer of the first conductivity type formed in a region in the first semiconductor layer immediately below the third semiconductor layer; a first contact electrically connected to the first semiconductor layer; and a second contact electrically connected to the second semiconductor layer. An impurity concentration of the fourth semiconductor layer is higher than that of the first semiconductor layer and is lower than that of the third semiconductor layer.
    Type: Application
    Filed: June 23, 2016
    Publication date: August 13, 2020
    Applicants: SHARP KABUSHIKI KAISHA, SHARP KABUSHIKI KAISHA
    Inventors: KAZUHIRO NATSUAKI, TAKAHIRO TAKIMOTO, MASAYO UCHIDA
  • Patent number: 10707369
    Abstract: An avalanche photodiode according to the present invention includes, inside a substrate semiconductor layer having a first conductivity type and a uniform impurity concentration, a first semiconductor layer having the first conductivity type, a second semiconductor layer having a second conductivity type, a third semiconductor layer having the second conductivity type, a fourth semiconductor layer having the second conductivity type, a fifth semiconductor layer having the first conductivity type and formed at a position away from the third semiconductor layer in a lateral direction, a sixth semiconductor layer having the second conductivity type, a first contact, and a second contact. The first semiconductor layer is positioned just under the second semiconductor layer and the fifth semiconductor layer in contact therewith. An avalanche phenomenon is caused at a junction between the first semiconductor layer and the second semiconductor layer.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: July 7, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhiro Natsuaki, Takahiro Takimoto, Masayo Uchida
  • Publication number: 20200065581
    Abstract: The image processing method includes a luminance value information obtaining step of obtaining effective radiance values from a subject, and an image generating step of generating a picture image as a set of unit regions each of which has a luminance value obtained by at least partially removing a regular reflection light component on a surface of the subject from the effective radiance values.
    Type: Application
    Filed: October 30, 2019
    Publication date: February 27, 2020
    Inventors: Suguru KAWABATA, Takashi NAKANO, Kazuhiro NATSUAKI, Takahiro TAKIMOTO, Shinobu YAMAZAKI, Daisuke HONDA, Yukio TAMAI
  • Patent number: 10566489
    Abstract: A photosensor includes a light emitting element that radiates light onto an object to be detected and a light receiving element that has a light-receiving surface for receiving light radiated from the light emitting element. An incident light regulation portion covering the light-receiving surface is provided on a path along which the light radiated from the light emitting element directed toward the light-receiving surface, and the incident light regulation portion transmits light having an incident angle less than a predetermined value and blocks light having the incident angle greater than or equal to the predetermined value among light incident on the light receiving element.
    Type: Grant
    Filed: May 26, 2017
    Date of Patent: February 18, 2020
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhiro Natsuaki, Takahiro Takimoto, Masayo Uchida
  • Publication number: 20200028019
    Abstract: An avalanche photodiode includes a first-conductivity-type semiconductor layer formed within a first-conductivity-type semiconductor substrate; a first second-conductivity-type semiconductor layer formed so as to surround, in plan view for the substrate, with a gap width, the first-conductivity-type semiconductor layer; a second second-conductivity-type semiconductor layer formed deeper than the first-conductivity-type semiconductor layer and in contact with the bottom portion of the first-conductivity-type semiconductor layer; and a third second-conductivity-type semiconductor layer formed deeper than the second second-conductivity-type semiconductor layer and in contact with the bottom portion of the second second-conductivity-type semiconductor layer; and a fourth second-conductivity-type semiconductor layer formed between the first second-conductivity-type semiconductor layer and the third second-conductivity-type semiconductor layer so as to be in contact with at least a portion of a bottom portion of
    Type: Application
    Filed: June 12, 2017
    Publication date: January 23, 2020
    Inventors: TAKAHIRO TAKIMOTO, KAZUHIRO NATSUAKI, MASAYO UCHIDA
  • Patent number: 10521660
    Abstract: The image processing method includes a luminance value information obtaining step of obtaining effective radiance values from a subject, and an image generating step of generating a picture image as a set of unit regions each of which has a luminance value obtained by at least partially removing a regular reflection light component on a surface of the subject from the effective radiance values.
    Type: Grant
    Filed: April 24, 2017
    Date of Patent: December 31, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Suguru Kawabata, Takashi Nakano, Kazuhiro Natsuaki, Takahiro Takimoto, Shinobu Yamazaki, Daisuke Honda, Yukio Tamai
  • Patent number: 10481313
    Abstract: An image capturing apparatus that includes a polarizing filter of a slit type in which polarization characteristics are improved is realized. A polarizing unit (10) of an image capturing apparatus (100) includes a first polarizer layer (120a) and a second polarizer layer (120b) that hold a dielectric layer (14) therebetween, and a plurality of slits (13) that are arranged at regular intervals in a predetermined direction are formed in each of the first polarizer layer (120a) and the second polarizer layer (120b). A forming material of each of the first polarizer layer (120a) and the second polarizer layer (120b) and a forming material of a wiring layer that controls an operation of a light receiving unit (11) are selected from Al, Si, Cu, Au, Ag, Pt, W, Ti, Sn, In, Ga, Zn, and a compound or alloy that contains at least one of the foregoing.
    Type: Grant
    Filed: March 8, 2017
    Date of Patent: November 19, 2019
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Daisuke Honda, Takashi Nakano, Suguru Kawabata, Takahiro Takimoto, Kazuhiro Natsuaki, Masayo Uchida, Masaaki Uchihashi
  • Publication number: 20190280145
    Abstract: An avalanche photodiode according to the present invention includes, inside a substrate semiconductor layer having a first conductivity type and a uniform impurity concentration, a first semiconductor layer having the first conductivity type, a second semiconductor layer having a second conductivity type, a third semiconductor layer having the second conductivity type, a fourth semiconductor layer having the second conductivity type, a fifth semiconductor layer having the first conductivity type and formed at a position away from the third semiconductor layer in a lateral direction, a sixth semiconductor layer having the second conductivity type, a first contact, and a second contact. The first semiconductor layer is positioned just under the second semiconductor layer and the fifth semiconductor layer in contact therewith. An avalanche phenomenon is caused at a junction between the first semiconductor layer and the second semiconductor layer.
    Type: Application
    Filed: September 26, 2017
    Publication date: September 12, 2019
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: KAZUHIRO NATSUAKI, TAKAHIRO TAKIMOTO, MASAYO UCHIDA
  • Publication number: 20190162890
    Abstract: An image capturing apparatus that includes a polarizing filter of a slit type in which polarization characteristics are improved is realized. A polarizing unit (10) of an image capturing apparatus (100) includes a first polarizer layer (120a) and a second polarizer layer (120b) that hold a dielectric layer (14) therebetween, and a plurality of slits (13) that are arranged at regular intervals in a predetermined direction are formed in each of the first polarizer layer (120a) and the second polarizer layer (120b). A forming material of each of the first polarizer layer (120a) and the second polarizer layer (120b) and a forming material of a wiring layer that controls an operation of a light receiving unit (11) are selected from Al, Si, Cu, Au, Ag, Pt, W, Ti, Sn, In, Ga, Zn, and a compound or alloy that contains at least one of the foregoing.
    Type: Application
    Filed: March 8, 2017
    Publication date: May 30, 2019
    Inventors: DAISUKE HONDA, TAKASHI NAKANO, SUGURU KAWABATA, TAKAHIRO TAKIMOTO, KAZUHIRO NATSUAKI, MASAYO UCHIDA, MASAAKI UCHIHASHI
  • Publication number: 20190109255
    Abstract: A photosensor includes a light emitting element that radiates light onto an object to be detected and a light receiving element that has a light-receiving surface for receiving light radiated from the light emitting element.. An incident light regulation portion covering the light-receiving surface is provided on a path along which the light radiated from the light emitting element directed toward the light-receiving surface, and the incident light regulation portion transmits light having an incident angle less than a predetermined value and blocks light having the incident angle greater than or equal to the predetermined value among light incident on the light receiving element.
    Type: Application
    Filed: May 26, 2017
    Publication date: April 11, 2019
    Inventors: KAZUHIRO NATSUAKI, TAKAHIRO TAKIMOTO, MASAYO UCHIDA
  • Patent number: 10084006
    Abstract: Provided are an optical receiver that can realize a reduction in the variation of sensitivity in the ultraviolet light region and a reduction in noise in the visible light region and the infrared light region, a portable electronic device, and a method of producing an optical receiver. The first light-receiving device (PD1) and the second light-receiving device (PD2) of the optical receiver (1) are each constituted by forming a second conductivity-type N-type well layer (N_well) on a first conductivity-type P-type substrate (P_sub), forming a first conductivity-type P-type well layer (P_well) in the N-type well layer (N_well), and forming a second conductivity-type N-type diffusion layer (N) in the P-type well layer (P_well). The P-type substrate P_sub, the N-type well layer (N_well), and the P-type well layer (P_well) are electrically at the same potential or are short-circuited.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: September 25, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Masaaki Uchihashi, Kazuhiro Natsuaki, Masayo Uchida, Takahiro Takimoto
  • Patent number: 10032817
    Abstract: A photoelectric conversion device includes: a first optical filter that has a first pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a first photoelectric conversion element with an insulating film therebetween; and a first optical filter that has a second pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a second photoelectric conversion element with the insulating film therebetween. The interval between the first pattern and the second pattern that are adjacent to each other is longer than a period of the structures in the first pattern and a period of the structures in the second pattern.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: July 24, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Takahiro Takimoto, Kazuhiro Natsuaki, Masayo Uchida, Nobuyoshi Awaya, Kazuya Ishihara, Takashi Nakano, Mitsuru Nakura
  • Patent number: 9876125
    Abstract: A photoelectric conversion device capable of preventing anomalous transmission of light of a wavelength that is not supposed to be transmitted and reducing the half-width of a spectral waveform and a method for manufacturing such a photoelectric conversion device are provided. A first photoelectric conversion element is formed on a substrate. A first metal film having a plurality of openings arranged periodically or aperiodically is formed above the first photoelectric conversion element with insulating films interposed therebetween. A second metal film covering a part of the openings in the first metal film is provided.
    Type: Grant
    Filed: July 11, 2014
    Date of Patent: January 23, 2018
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhiro Natsuaki, Masayo Uchida, Takahiro Takimoto, Nobuyoshi Awaya, Kazuya Ishihara, Takashi Nakano, Mitsuru Nakura
  • Publication number: 20170316266
    Abstract: The image processing method includes a luminance value information obtaining step of obtaining effective radiance values from a subject, and an image generating step of generating a picture image as a set of unit regions each of which has a luminance value obtained by at least partially removing a regular reflection light component on a surface of the subject from the effective radiance values.
    Type: Application
    Filed: April 24, 2017
    Publication date: November 2, 2017
    Inventors: Suguru KAWABATA, Takashi NAKANO, Kazuhiro NATSUAKI, Takahiro TAKIMOTO, Shinobu YAMAZAKI, Daisuke HONDA, Yukio TAMAI
  • Publication number: 20170294474
    Abstract: Provided are an optical receiver that can realize a reduction in the variation of sensitivity in the ultraviolet light region and a reduction in noise in the visible light region and the infrared light region, a portable electronic device, and a method of producing an optical receiver. The first light-receiving device (PD1) and the second light-receiving device (PD2) of the optical receiver (1) are each constituted by forming a second conductivity-type N-type well layer (N_well) on a first conductivity-type P-type substrate (P_sub), forming a first conductivity-type P-type well layer (P_well) in the N-type well layer (N_well), and forming a second conductivity-type N-type diffusion layer (N) in the P-type well layer (P_well). The P-type substrate P_sub, the N-type well layer (N_well), and the P-type well layer (P_well) are electrically at the same potential or are short-circuited.
    Type: Application
    Filed: July 28, 2015
    Publication date: October 12, 2017
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Masaaki UCHIHASHI, Kazuhiro NATSUAKI, Masayo UCHIDA, Takahiro TAKIMOTO
  • Publication number: 20170146707
    Abstract: A spectral device includes a polarizing filter and an optical filter. The polarizing filter transmits part of light incident on the polarizing filter, the part of light having a particular polarization component. Light that is incident on and passes through the polarizing filter is converted into linearly polarized light. Light that has passed through the polarizing filter is incident on the optical filter. The optical filter transmits light within a particular frequency range. The optical filter includes a metal layer and a dielectric layer. The dielectric layer is disposed on the metal layer. Multiple slits are formed in the metal layer. The multiple slits are arranged at equal intervals in a predetermined direction. The multiple slits extend in a direction perpendicular to a direction in which the light that has passed through the polarizing filter is polarized.
    Type: Application
    Filed: November 2, 2016
    Publication date: May 25, 2017
    Inventors: Suguru KAWABATA, Takashi NAKANO, Kazuhiro NATSUAKI, Masaaki UCHIHASHI, Masayo UCHIDA
  • Patent number: 9513415
    Abstract: An optical filter configured to transmit light of a predetermined wavelength includes a substrate; a first conductive thin film that is disposed on the substrate and has apertures extending through the first conductive thin film and arranged with a period of less than the predetermined wavelength; and a second conductive thin film at least a portion of which faces the apertures so as to be separated from the apertures.
    Type: Grant
    Filed: June 18, 2014
    Date of Patent: December 6, 2016
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Takashi Nakano, Mitsuru Nakura, Kazuya Ishihara, Nobuyoshi Awaya, Kazuhiro Natsuaki, Takahiro Takimoto, Masayo Uchida
  • Publication number: 20160254303
    Abstract: A photoelectric conversion device includes: a first optical filter that has a first pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a first photoelectric conversion element with an insulating film therebetween; and a first optical filter that has a second pattern periodically having a plurality of structures and is formed of a conductive material film disposed on a second photoelectric conversion element with the insulating film therebetween. The interval between the first pattern and the second pattern that are adjacent to each other is longer than a period of the structures in the first pattern and a period of the structures in the second pattern.
    Type: Application
    Filed: September 16, 2014
    Publication date: September 1, 2016
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Takahiro TAKIMOTO, Kazuhiro NATSUAKI, Masayo UCHIDA, Nobuyoshi AWAYA, Kazuya ISHIHARA, Takashi NAKANO, Mitsuru NAKURA
  • Publication number: 20160211388
    Abstract: A photoelectric conversion device capable of preventing anomalous transmission of light of a wavelength that is not supposed to be transmitted and reducing the half-width of a spectral waveform and a method for manufacturing such a photoelectric conversion device are provided. A first photoelectric conversion element is formed on a substrate. A first metal film having a plurality of openings arranged periodically or aperiodically is formed above the first photoelectric conversion element with insulating films interposed therebetween. A second metal film covering a part of the openings in the first metal film is provided.
    Type: Application
    Filed: July 11, 2014
    Publication date: July 21, 2016
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Kazuhiro NATSUAKI, Masayo UCHIDA, Takahiro TAKIMOTO, Nobuyoshi AWAYA, Kazuya ISHIHARA, Takashi NAKANO, Mitsuru NAKURA