Patents by Inventor Kazuhiro Suetsugu

Kazuhiro Suetsugu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8506729
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9 (Cr+0.3Si+Mo+0.5W)?2.6 (Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc?100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Grant
    Filed: January 13, 2012
    Date of Patent: August 13, 2013
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Publication number: 20120111457
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has seawater resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9 (Cr+0.3Si +Mo+0.5W)?2.6 (Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc'100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Application
    Filed: January 13, 2012
    Publication date: May 10, 2012
    Applicant: Nippon Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Patent number: 8105447
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9(Cr+0.3Si+Mo+0.5W)?2.6(Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc?100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: January 31, 2012
    Assignee: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Publication number: 20100230011
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI [=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9(Cr+0.3Si+Mo+0.5W)?2.6(Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc'100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Application
    Filed: February 23, 2009
    Publication date: September 16, 2010
    Applicant: Nippon Steel & Sumikin Stainless Steel Corporation
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Publication number: 20060243356
    Abstract: An austenitic stainless steel hot-rolled steel material can be provided which has sea-water resistance and strength superior to conventional steel. Low-temperature toughness can be maintained, which is preferable in a structural member of speedy craft. The steel material can include an austenitic stainless steel hot-rolled steel material which excels in the properties of corrosion resistance, proof stress, and low-temperature toughness. In such austenitic stainless steel hot-rolling steel material, e.g., PI[=Cr+3.3(Mo+0.5W)+16N] ranges from 35 to 40, ? cal [=2.9 (Cr+0.3Si+Mo+0.5W)?2.6 (Ni+0.3Mn+0.25Cu+35C+20N)?18] ranges from ?6 to +2, and a 0.2% proof stress at room temperature is not less than 550 MPa, Charpy impact value measured using a V-notch test piece at ?40° C. is not less than 100 J/cm2, and the pitting potential measured in a deaerated aqueous solution of 10% NaCl at 50° C. (Vc?100) is not less than 500 mV (as it relates to saturated Ag/AgCl).
    Type: Application
    Filed: January 30, 2006
    Publication date: November 2, 2006
    Inventors: Yuusuke Oikawa, Shinji Tsuge, Shigeo Fukumoto, Kazuhiro Suetsugu, Ryo Matsuhashi, Hiroshige Inoue
  • Publication number: 20060152001
    Abstract: A specified metal member included among the components of a valve, coupling or like fluid handling part for use in piping and fluid control devices is made of an alloy comprising, in % by weight, 0.001 to 0.01% of C, up to 5% of Si, up to 2% of Mn, up to 0.03% of P, up to 100 ppm of S, up to 50 ppm of O, 18 to 25% of Cr, 15 to 25% of Ni, 4.5 to 7.0% of Mo, 0.5 to 3.0% of Cu, 0.1 to 0.3% of N, and the balance substantially Fe and other inevitable impurities, the alloy having a CRI (crevice corrosion resistance index) value in the range of 40?CRI?55, as determined from the expression CRI=[Cr]+4×[Mo]+30×[N] wherein the amount of alloy components present in combination in the alloy to ensure crevice corrosion resistance are expressed in % by weight.
    Type: Application
    Filed: July 9, 2003
    Publication date: July 13, 2006
    Inventors: Ryo Matsuhashi, Kazuhiro Suetsugu, Hideyuki Miyagawa, Toshio Kita, Kyota Sogabe, Kazuhiro Yoshikawa, Akihiro Morimoto, Jyunji Sato, Kunihiko Daido, Hisatoshi Akamoto, Yoshiki Kimura
  • Publication number: 20060102868
    Abstract: A specified metal member (e.g., a bolt) 5 included among a plurality of components 2, 3, 4, 5, 6 of a fluid handling part and having a surface exposed on an exterior of the fluid handling part is made of an alloy comprising, in % by weight, 0.001 to 0.01% of C, up to 5% of Si, up to 2% of Mn, up to 0.03% of P, up to 100 ppm of S, up to 50 ppm of O, 18 to 25% of Cr, 15 to 25% of Ni, 4.5 to 7.0% of Mo, 0.5 to 3.0% of Cu, 0.1 to 0.3% of N, and the balance substantially Fe and other inevitable impurities.
    Type: Application
    Filed: July 9, 2003
    Publication date: May 18, 2006
    Inventors: Ryo Matsuhashi, Kazuhiro Suetsugu, Hideyuki Miyagawa, Toshio Kita, Kyota Sogabe, Kazuhiro Yoshikawa, Akihiro Morimoto, Jyunji Sato, Kunihiko Daido, Masahiko Sogao, Yoshiaki Chikaike
  • Publication number: 20060102867
    Abstract: A fluid control device 1 comprises a metal body 2 having a fluid inlet channel 2a, a fluid outlet channel 2b and a communication channel 2c for holding the two channels in communication, and a metal slide member 3 vertically movable in a vertical passage 11 including the communication channel 2c for closing or opening the communication channel 2c with an end portion thereof. At least the end portion 3a of the slide member 3 is made of an alloy comprising, in % by weight, 0.001 to 0.01% of C, up to 5% of Si, up to 2% of Mn, up to 0.03% of P, up to 100 ppm of S, up to 50 ppm of O, 18 to 25% of Cr, 15 to 25% of Ni, 4.5 to 7.0% of Mo, 0.5 to 3.0% of Cu, 0.1 to 0.3% of N, and the balance substantially Fe and other inevitable impurities.
    Type: Application
    Filed: July 9, 2003
    Publication date: May 18, 2006
    Inventors: Ryo Matsuhashi, Kazuhiro Suetsugu, Hideyuki Miyagawa, Toshio Kita, Kyota Sogabe, Kazuhiro Yoshikawa, Akihiro Morimoto, Jyunji Sato, Kunihiko Daido, Hirokatsu Maeda
  • Publication number: 20060091672
    Abstract: A pipe coupling 30 comprises a tubular body 31 for a pipe 32 to be inserted in through the rear end thereof, a front ring 33 and a back ring 34 to be fitted around the pipe 32 projecting from the rear end of the body 31, and a cap nut 35 for tightening up the front and back rings 33, 34 to fix the pipe 32 to the body 31. The back ring 34 is made of an alloy comprising, in % by weight, 0.001 to 0.01% of C, up to 5% of Si, up to 2% of Mn, up to 0.03% of P, up to 100 ppm of S, up to 50 ppm of O, 18 to 25% of Cr, 15 to 25% of Ni, 4.5 to 7.0% of Mo, 0.5 to 3.0% of Cu, 0.1 to 0.3% of N, and the balance substantially Fe and other inevitable impurities.
    Type: Application
    Filed: July 9, 2003
    Publication date: May 4, 2006
    Inventors: Ryo Matsuhashi, Kazuhiro Suetsugu, Hideyuki Miyagawa, Toshio Kita, Kyota Sogabe, Kazuhiro Yoshikawa, Akihiro Morimoto, Jyunji Sato, Kunihiko Shimomura, Yoshinori Shimomura, Takayasu Nakahama