Patents by Inventor Kazuhiro Takahashi

Kazuhiro Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200326101
    Abstract: A refrigeration cycle apparatus that can improve operation efficiency when a refrigerant that contains at least 1,2-difluoroethylene is used is provided. An air conditioning apparatus 1 includes a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), an indoor heat exchanger (31), and a suction injection pipe (40), and uses a refrigerant that contains at least 1,2-difluoroethylene. The suction injection pipe (40) allows a part of a refrigerant that flows toward the indoor heat exchanger (31) from the outdoor heat exchanger (23) to merge with a low-pressure refrigerant that is sucked into the compressor (21).
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO, Tetsushi TSUDA, Takeo ABE, Yumi TODA
  • Publication number: 20200326110
    Abstract: High efficiency of a compressor that compresses a mixed refrigerant containing at least 1,2-difluoroethylene is achieved. A compressor (100) includes a motor (70) that has a rotor (71) including permanent magnets (712) and thus is suitable for a variable capacity compressor in which the number of rotations of the motor can be changed. In this case, it is possible to change the number of rotations of the motor in accordance with an air conditioning load in an air conditioner (1) that uses a mixed refrigerant containing at least 1,2-difluoroechylene. It is thus possible to enable high efficiency of the compressor (100).
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Yoshinari ASANO, Keiji AOTA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Yuzo KOMATSU, Shun OHKUBO, Tatsuya TAKAKUWA, Tetsushi TSUDA
  • Publication number: 20200326102
    Abstract: An air conditioning unit capable of performing a refrigeration cycle using a small-GWP refrigerant is provided. A refrigeration cycle apparatus (1, 1a to 1m) includes a refrigerant circuit (10) including a compressor (21), a condenser (23, 31, 36), a decompressing section (24, 44, 45, 33, 38), and an evaporator (31, 36, 23), and a refrigerant containing at least 1,2-difluoroethylene enclosed in the refrigerant circuit (10).
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO
  • Publication number: 20200325374
    Abstract: The present invention provides a haloolefin-based composition comprising a highly-stable haloolefin in which decomposition and oxidization are inhibited, and the haloolefin-based composition being used for at least one application selected from the group consisting of heat transfer media, refrigerants, foaming agents, solvents, cleaning agents, propellants, and fire extinguishers. The present invention relates to a haloolefin-based composition comprising a haloolefin and water and being used for at least one application selected from the group consisting of heat transfer media, refrigerants, foaming agents, solvents, cleaning agents, propellants, and fire extinguishers. The haloolefin-based composition comprising a haloolefin and water is used for at least one application selected from the group consisting of heat transfer media, refrigerants, foaming agents, solvents, cleaning agents, propellants, and fire extinguishers.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuhiro TAKAHASHI, Tatsumi TSUCHIYA, Yasufu YAMADA
  • Publication number: 20200326100
    Abstract: A warm-water generating apparatus (1) uses, as a refrigerant, a mixed refrigerant containing at least 1,2-difluoroethylene (HFO-1132(E)). The warm-water generating apparatus (1) includes a compressor (21), a heat-source-side air heat exchanger (24), an expansion valve (23), and a use-side water heat exchanger (22). The water heat exchanger (22) causes the mixed refrigerant flowing therein and first water to exchange heat with each other to heat the first water.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Masanori UKIBUNE, Atsushi OKAMOTO, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Yuzo KOMATSU, Shun OHKUBO, Tatsuya TAKAKUWA
  • Publication number: 20200326109
    Abstract: A two-stage refrigeration apparatus (500) includes a first cycle (510) and a second cycle (520). The first cycle (510) includes a first compressor (511), a first condenser (512), a first expansion mechanism (513), and a first evaporator (514) that are arranged in such a manner as to be connected to the first cycle. A first refrigerant circulates through the first cycle. The second cycle (520) includes a second downstream-side condenser (523) and a second evaporator (527) that are arranged in such a manner as to be connected to the second cycle. A second refrigerant circulates through the second cycle. The first evaporator (514) and the second downstream-side condenser (523) constitute a cascade condenser (531). In the cascade condenser (531), heat is exchanged between the first refrigerant and the second refrigerant. At least one of the first refrigerant and the second refrigerant is a refrigerant mixture containing at least 1,2-difluoroethylene (FO-1132(E)).
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO
  • Publication number: 20200326103
    Abstract: A refrigeration cycle is a refrigeration cycle using a mixed refrigerant which is a flammable refrigerant and which contains at least 1,2-difluoroethylene (HFO-1132(E)), and includes a compressor (1), a heat-source-side heat exchanger (3), an expansion mechanism (4), a use-side heat exchanger (2), and a decompression mechanism (7). The decompression mechanism (7) decompresses, between an inlet and an outlet of the heat-source-side heat exchanger (3), the mixed refrigerant flowing through the heat-source-side heat exchanger (3) that functions as an evaporator.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO
  • Publication number: 20200326105
    Abstract: A heat source unit and a refrigeration cycle apparatus that are able to reduce damage to a connection pipe when a refrigerant containing at least 1,2-difluoroethylene is used are provided. An outdoor unit (20) that is connected via a liquid-side connection pipe (6) and a gas-side connection pipe (5) to an indoor unit (30) including an indoor heat exchanger (31) and that is a component of an air conditioner (1) includes a compressor (21) and an outdoor heat exchanger (23). A refrigerant containing at least 1,2-difluoroethylene is used as a refrigerant. A design pressure of the outdoor unit (20) is lower than 1.5 times a design pressure of each of the liquid-side connection pipe (6) and the gas-side connection pipe (5).
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO
  • Publication number: 20200325377
    Abstract: A refrigeration cycle apparatus (10) includes a refrigerant circuit (11) including a compressor (12), a heat source-side heat exchanger (13), an expansion mechanism (14), and a usage-side heat exchanger (15). In the refrigerant circuit (11), a refrigerant containing at least 1,2-difluoroethylene (HFO-1132 (E)) is sealed. At least during a predetermined operation, in at least one of the heat source-side heat exchanger (13) and the usage-side heat exchanger (15), a flow of the refrigerant and a flow of a heating medium that exchanges heating with the refrigerant are counter flows.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO
  • Publication number: 20200325376
    Abstract: A refrigeration cycle apparatus that is able to reduce the amount of refrigerant used while reducing a pressure loss in the case where a refrigerant containing at least 1,2-difluoroethylene is used is provided. In an air conditioner (1) including a refrigerant circuit (10), including a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), and an indoor heat exchanger (31), and a refrigerant containing at least 1,2-difluoroethylene and sealed in the refrigerant circuit (10), the outdoor heat exchanger (23) has a heat transfer tube (23b) of which a pipe diameter is greater than or equal to 6.35 mm and less than 10.0 mm.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO
  • Publication number: 20200325375
    Abstract: A refrigeration cycle apparatus capable of keeping a LCCP low when a heat cycle is performed using a sufficiently small-GWP refrigerant, and a method of determining a refrigerant enclosure amount in the refrigeration cycle apparatus are provided. An outdoor unit (20) including a compressor (21) and an outdoor heat exchanger (23), an indoor unit (30) including an indoor heat exchanger (31), and a refrigerant pipe (5, 6) that connects the outdoor unit (20) and the indoor unit (30) to each other are provided. A refrigerant containing at least 1,2-difluoroethylene is enclosed in a refrigerant circuit (10) that is constituted by connecting the compressor (21), the outdoor heat exchanger (23), and the indoor heat exchanger (31) to one another. An enclosure amount of the refrigerant in the refrigerant circuit (10) per 1 kW of refrigeration capacity satisfies a condition of 160 g or more and 560 g or less.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Yuzo KOMATSU, Shun OHKUBO, Tatsuya TAKAKUWA
  • Publication number: 20200317975
    Abstract: An object is to provide a mixed refrigerant having three types of performance, i.e., a refrigerating capacity that is equivalent to that of R410A, a sufficiently low GWP, and a lower flammability (Class 2L) according to the ASHRAE standard. Provided is a composition comprising a refrigerant, the refrigerant comprising trans-1,2-difluoroethylene (HFO-1132(E)), difluoromethane (R32), and 2,3,3,3-tetrafluoro-1-propene (R1234yf), wherein when the mass % of HFO-1132(E), R32, and R1234yf based on their sum in the refrigerant is respectively represented by x, y, and z, coordinates (x, y, z) in a ternary composition diagram in which the sum of HFO-1132(E), R32, and R1234yf is 100 mass % are within the range of a figure surrounded by line segments AC, CF, FD, and DA that connect the following 4 points: point A (71.1, 0.0, 28.9), point C (36.5, 18.2, 45.3), point F (47.6, 18.3, 34.1), and point D (72.0, 0.0, 28.0), or on these line segments; the line segment AC is represented by coordinates (0.0181y2?2.2288y+71.
    Type: Application
    Filed: October 17, 2018
    Publication date: October 8, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI
  • Publication number: 20200309437
    Abstract: A refrigeration cycle apparatus capable of keeping a LCCP low when a heat cycle is performed using a sufficiently small-GWP refrigerant, and a method of determining a refrigerant enclosure amount in the refrigeration cycle apparatus are provided. An outdoor unit (20) including a compressor (21) and an outdoor heat exchanger (23), an indoor unit (30) including an indoor heat exchanger (31), and a refrigerant pipe (5, 6) that connects the outdoor unit (20) and the indoor unit (30) to each other are provided. A refrigerant containing at least 1,2-difluoroethylene is enclosed in a refrigerant circuit (10) that is constituted by connecting the compressor (21), the outdoor heat exchanger (23), and the indoor heat exchanger (31) to one another. An enclosure amount of the refrigerant in the refrigerant circuit (10) per 1 kW of refrigeration capacity satisfies a condition of 160 g or more and 560 g or less.
    Type: Application
    Filed: December 10, 2018
    Publication date: October 1, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Yuzo KOMATSU, Shun OHKUBO, Tatsuya TAKAKUWA
  • Publication number: 20200309419
    Abstract: A refrigeration cycle apparatus that is able to reduce the amount of refrigerant used while reducing a pressure loss in the case where a refrigerant containing at least 1,2-difluoroethylene is used is provided. In an air conditioner (1) including a refrigerant circuit (10), including a compressor (21), an outdoor heat exchanger (23), an outdoor expansion valve (24), and an indoor heat exchanger (31), and a refrigerant containing at least 1,2-difluoroethylene and sealed in the refrigerant circuit (10), the outdoor heat exchanger (23) has a heat transfer tube (23b) of which a pipe diameter is greater than or equal to 6.35 mm and less than 10.0 mm.
    Type: Application
    Filed: December 18, 2018
    Publication date: October 1, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Eiji KUMAKURA, Takuro YAMADA, Atsushi YOSHIMI, Ikuhiro IWATA, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Tatsuya TAKAKUWA, Yuzo KOMATSU, Shun OHKUBO
  • Publication number: 20200309411
    Abstract: A warm-water generating apparatus (1) uses, as a refrigerant, a mixed refrigerant containing at least 1,2-difluoroethylene (HFO-1132(E)). The warm-water generating apparatus (1) includes a compressor (21), a heat-source-side air heat exchanger (24), an expansion valve (23), and a use-side water heat exchanger (22). The water heat exchanger (22) causes the mixed refrigerant flowing therein and first water to exchange heat with each other to heat the first water.
    Type: Application
    Filed: December 13, 2018
    Publication date: October 1, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Masanori UKIBUNE, Atsushi OKAMOTO, Mitsushi ITANO, Daisuke KARUBE, Yuuki YOTSUMOTO, Kazuhiro TAKAHASHI, Yuzo KOMATSU, Shun OHKUBO, Tatsuya TAKAKUWA
  • Patent number: 10781460
    Abstract: A method which enables olefin compound production with a high productivity and an enzyme used in the method, a mutation involving amino acid substitution has been introduced into various sites of diphosphomevalonate decarboxylase (MVD), thus preparing a large number of MVD variants. Next, the result of evaluating the variants for the catalytic activity related to the production of olefin compounds such as isoprene has revealed that MVD whose threonine at position 209 is substituted with a different amino acid has the catalytic activity, and that MVD whose arginine at position 74 is further substituted with a different amino acid in addition to position 209 has the catalytic activity at higher levels.
    Type: Grant
    Filed: August 3, 2016
    Date of Patent: September 22, 2020
    Assignees: RIKEN, ZEON CORPORATION, THE YOKOHAMA RUBBER CO., LTD.
    Inventors: Ryoko Orishimo, Tomokazu Shirai, Kazuhiro Takahashi, Misao Hiza, Yusuke Tanabe
  • Publication number: 20200290436
    Abstract: A fixed window glass assembly with a resin frame, wherein the resin frame is attached to a peripheral edge portion of a fixed window glass to be mounted to a vehicle and has a guide portion for guiding an elevating window glass, the resin frame is formed of an integrally molded product including a harder portion and a softer portion covering the harder portion, the harder portion being formed in a U-character shape in section to wrap the peripheral edge portion of the fixed window glass in a thickness direction thereof. The harder portion includes a buffer portion at a part of the peripheral edge portion of the fixed window glass to buffer stresses to be generated between the fixed window glass and the resin frame.
    Type: Application
    Filed: June 3, 2020
    Publication date: September 17, 2020
    Applicant: AGC Inc.
    Inventor: Kazuhiro TAKAHASHI
  • Publication number: 20200263069
    Abstract: The present invention provides a highly stable haloolefin-based composition that inhibits decomposition or oxidization. The haloolefin-based composition comprising (a) a haloolefin; (b) at least one compound selected from the group consisting of HFO-1234ze, HFC-254eb, HFO-1243zf, HFC-245eb, HFC-245fa, HFC-245cb, HFC-236ea, HFC-236fa, HFO-1225ye, 3,3,3-trifluoropropine, HFC-23, HFC-32, HFC-125, HFC-143a, HFC-134a, FC-1216, HCFO-1233xf, HCFO-1233zd, HCFO-1232xf, HCFO-1223xd, and chloromethane; and (c) water.
    Type: Application
    Filed: May 7, 2020
    Publication date: August 20, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuhiro TAKAHASHI, Tatsumi TSUCHIYA, Yasufu YAMADA
  • Publication number: 20200247735
    Abstract: By subjecting a starting material composition containing hexafluorobutadiene and at least one additional compound selected from the group consisting of octafluoro-1-butene, octafluoro-2-butene, heptafluoro-1-butene, and heptafluoro-2-butene to extractive distillation in the presence of an extraction solvent to reduce the concentration of the additional compound, hexafluorobutadiene with higher purity can be obtained.
    Type: Application
    Filed: October 23, 2018
    Publication date: August 6, 2020
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuhiro TAKAHASHI, Yuuko OHHIGASHI, Junpei IYOTA
  • Patent number: 10731065
    Abstract: The present invention provides a haloolefin-based composition comprising a highly-stable haloolefin in which decomposition and oxidization are inhibited, and the haloolefin-based composition being used for at least one application selected from the group consisting of heat transfer media, refrigerants, foaming agents, solvents, cleaning agents, propellants, and fire extinguishers. The present invention relates to a haloolefin-based composition comprising a haloolefin and water and being used for at least one application selected from the group consisting of heat transfer media, refrigerants, foaming agents, solvents, cleaning agents, propellants, and fire extinguishers. The haloolefin-based composition comprising a haloolefin and water is used for at least one application selected from the group consisting of heat transfer media, refrigerants, foaming agents, solvents, cleaning agents, propellants, and fire extinguishers.
    Type: Grant
    Filed: February 29, 2016
    Date of Patent: August 4, 2020
    Assignee: DAIKIN INDUSTRIES, LTD.
    Inventors: Kazuhiro Takahashi, Tatsumi Tsuchiya, Yasufu Yamada