Patents by Inventor Kazukuni Hara

Kazukuni Hara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11107892
    Abstract: A method for producing a SiC epitaxial wafer according to the present embodiment includes: an epitaxial growth step of growing the epitaxial layer on the SiC single crystal substrate by feeding an Si-based raw material gas, a C-based raw material gas, and a gas including a Cl element to a surface of a SiC single crystal substrate, in which the epitaxial growth step is performed under growth conditions that a film deposition pressure is 30 torr or less, a Cl/Si ratio is in a range of 8 to 12, a C/Si ratio is in a range of 0.8 to 1.2, and a growth rate is 50 ?m/h or more from an initial growth stage.
    Type: Grant
    Filed: April 19, 2018
    Date of Patent: August 31, 2021
    Assignees: SHOWA DENKO K.K., Central Research Institute Of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke Fukada, Naoto Ishibashi, Akira Bando, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Kazukuni Hara, Masami Naito, Hideyuki Uehigashi, Hiroaki Fujibayashi, Hirofumi Aoki, Toshikazu Sugiura, Katsumi Suzuki
  • Patent number: 10896831
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Grant
    Filed: August 31, 2018
    Date of Patent: January 19, 2021
    Assignees: NuFlare Technology, Inc., Showa Denko K.K., Central Research Institute of Electric Power Industry
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Patent number: 10745824
    Abstract: A film forming apparatus according to an embodiment includes: a film forming chamber configured to house therein a substrate to perform film forming processing; a gas supplier located in an upper part of the film forming chamber and configured to supply a process gas onto the substrate; and a heater configured to heat the substrate, wherein the film forming chamber has a temperature-increase suppression region being a lower part of the gas supplier and suppressing a temperature increase of the gas supplied to an upper part of the heater.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: August 18, 2020
    Assignee: NuFlare Technology, Inc.
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Masayoshi Yajima, Kazukuni Hara, Hiroaki Fujibayashi, Hideki Matsuura, Katsumi Suzuki
  • Publication number: 20200083330
    Abstract: A method for producing a SiC epitaxial wafer according to the present embodiment includes: an epitaxial growth step of growing the epitaxial layer on the SiC single crystal substrate by feeding an Si-based raw material gas, a C-based raw material gas, and a gas including a Cl element to a surface of a SiC single crystal substrate, in which the epitaxial growth step is performed under growth conditions that a film deposition pressure is 30 torr or less, a Cl/Si ratio is in a range of 8 to 12, a C/Si ratio is in a range of 0.8 to 1.2, and a growth rate is 50 ?m/h or more from an initial growth stage.
    Type: Application
    Filed: April 19, 2018
    Publication date: March 12, 2020
    Applicants: SHOWA DENKO K.K., Central Research Institute of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke FUKADA, Naoto ISHIBASHI, Akira BANDO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Kazukuni HARA, Masami NAITO, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Hirofumi AOKI, Toshikazu SUGIURA, Katsumi SUZUKI
  • Publication number: 20190376206
    Abstract: This SiC epitaxial wafer includes: a SiC single crystal substrate of which a main surface has an off-angle of 0.4° to 5° with respect to (0001) plane; and an epitaxial layer provided on the SiC single crystal substrate, wherein the epitaxial layer has a basal plane dislocation density of 0.1 pieces/cm2 or less that is a density of basal plane dislocations extending from the SiC single crystal substrate to an outer surface and an intrinsic 3C triangular defect density of 0.1 pieces/cm2 or less.
    Type: Application
    Filed: December 25, 2017
    Publication date: December 12, 2019
    Applicants: SHOWA DENKO K.K, Central Research Institute of Electric Power Industry, DENSO CORPORATION
    Inventors: Keisuke FUKADA, Naoto ISHIBASHI, Akira BANDO, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Kazukuni HARA, Masami NAITO, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Hirofumi AOKI, Toshikazu SUGIURA, Katsumi SUZUKI
  • Patent number: 10262863
    Abstract: A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
    Type: Grant
    Filed: December 8, 2015
    Date of Patent: April 16, 2019
    Assignees: SHOWA DENKO K.K., Central Research Institute Of Electric Power Industry
    Inventors: Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hideyuki Uehigashi, Hiroaki Fujibayashi, Masami Naito, Kazukuni Hara, Takahiro Kozawa, Hirofumi Aoki
  • Publication number: 20180374721
    Abstract: A supply part includes a first partition, a second partition under the first partition, a third partition under the second partition, a first flow path between the first partition and the second partition allowing a first gas to be introduced therein, a second flow path between the second partition and the third partition allowing a second gas to be introduced therein, a first piping extending from the second partition to reach below the third partition and being communicated with the first flow path, a second piping extending from the third partition to reach below the third partition and being communicated with the second flow path, and a convex portion provided on an outer circumferential surface of the first piping or an inner circumferential surface of the second piping protruding from one of the outer circumferential surface and the inner circumferential surface toward the other one.
    Type: Application
    Filed: August 31, 2018
    Publication date: December 27, 2018
    Inventors: Kunihiko Suzuki, Naohisa Ikeya, Keisuke Fukada, Masahiko Ito, Isaho Kamata, Hidekazu Tsuchida, Hiroaki Fujibayashi, Hideyuki Uehigashi, Masami Naito, Kazukuni Hara, Hirofumi Aoki, Takahiro Kozawa
  • Publication number: 20180135175
    Abstract: A film forming apparatus according to an embodiment includes: a film forming chamber capable of housing a substrate therein; a gas supplier located in an upper part of the film forming chamber and having a plurality of nozzles supplying gases onto a film forming face of the substrate; a heater configured to heat the substrate; and a first protection cover having a plurality of opening parts at positions corresponding to the nozzles of the gas supplier, respectively.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 17, 2018
    Inventors: Kunihiko SUZUKI, Naohisa IKEYA, Masayoshi YAJIMA, Kazukuni HARA, Hiroaki FUJIBAYASHI, Hideki MATSUURA, Katsumi SUZUKI
  • Publication number: 20180135203
    Abstract: A film forming apparatus according to an embodiment includes: a film forming chamber configured to house therein a substrate to perform film forming processing; a gas supplier located in an upper part of the film forming chamber and configured to supply a process gas onto the substrate; and a heater configured to heat the substrate, wherein the film forming chamber has a temperature-increase suppression region being a lower part of the gas supplier and suppressing a temperature increase of the gas supplied to an upper part of the heater.
    Type: Application
    Filed: November 15, 2017
    Publication date: May 17, 2018
    Inventors: Kunihiko SUZUKI, Naohisa IKEYA, Masayoshi YAJIMA, Kazukuni HARA, Hiroaki FUJIBAYASHI, Hideki MATSUURA, Katsumi SUZUKI
  • Publication number: 20170345658
    Abstract: A method for manufacturing a SiC epitaxial wafer according to one aspect of the present invention includes separately introducing, into a reaction space for SiC epitaxial growth, a basic N-based gas composed of molecules containing an N atom within the molecular structure but having neither a double bond nor a triple bond between nitrogen atoms, and a Cl-based gas composed of molecules containing a Cl atom within the molecular structure, and mixing the N-based gas and the Cl-based gas at a temperature equal to or higher than the boiling point or sublimation temperature of a solid product generated by mixing the N-based gas and the Cl-based gas.
    Type: Application
    Filed: December 8, 2015
    Publication date: November 30, 2017
    Applicants: SHOWA DENKO K.K., Central Research Institute of Electric Power Industry
    Inventors: Keisuke FUKADA, Masahiko ITO, Isaho KAMATA, Hidekazu TSUCHIDA, Hideyuki UEHIGASHI, Hiroaki FUJIBAYASHI, Masami NAITO, Kazukuni HARA, Takahiro KOZAWA, Hirofumi AOKI
  • Patent number: 9644286
    Abstract: A silicon carbide single crystal manufacturing apparatus includes a vacuum chamber, a pedestal on which a seed crystal is disposed, an inlet of source gas, a reaction chamber extending from a bottom surface of the vacuum chamber toward the pedestal, a first heating device disposed around an outer periphery of the reaction chamber, a second heating device disposed around an outer periphery of the pedestal, and an outlet disposed outside the first and second heating devices in the vacuum chamber. After the source gas supplied from the reaction chamber is supplied toward the pedestal, the source gas is let flow outward in a radial direction of the silicon carbide single crystal between the reaction chamber and the silicon carbide single crystal and is discharged through the outlet.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: May 9, 2017
    Assignee: DENSO CORPORATION
    Inventor: Kazukuni Hara
  • Patent number: 9328431
    Abstract: An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a surface of a seed crystal made from a silicon carbide single crystal substrate by supplying a material gas for silicon carbide from below the seed crystal. The apparatus includes a base having a first side and a second side opposite to the first side. The seed crystal is mounted on the first side of the base. The apparatus further includes a purge gas introduction mechanism for supporting the base and for supplying a purge gas to the base from the second side of the base. The base has a purge gas introduction path for discharging the supplied purge gas from the base toward an outer edge of the seed crystal.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: May 3, 2016
    Assignee: DENSO CORPORATION
    Inventors: Kazukuni Hara, Yuuichirou Tokuda
  • Patent number: 8882911
    Abstract: An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a seed crystal by supplying a material gas from below the seed crystal. The apparatus includes a heating container and a base located in the heating container. The seed crystal is mounded on the base. The apparatus further includes a first inlet for causing a purge gas to flow along an inner wall surface of the heating container, a purge gas source for supplying the purge gas to the first inlet, a second inlet for causing the purge gas to flow along an outer wall surface of the base, and a mechanism for supporting the base and for supplying the purge gas to the base from below the base.
    Type: Grant
    Filed: December 14, 2011
    Date of Patent: November 11, 2014
    Assignee: DENSO CORPORATION
    Inventors: Yuuichirou Tokuda, Kazukuni Hara, Jun Kojima
  • Publication number: 20140123901
    Abstract: A silicon carbide single crystal manufacturing apparatus includes a vacuum chamber, a pedestal on which a seed crystal is disposed, an inlet of source gas, a reaction chamber extending from a bottom surface of the vacuum chamber toward the pedestal, a first heating device disposed around an outer periphery of the reaction chamber, a second heating device disposed around an outer periphery of the pedestal, and an outlet disposed outside the first and second heating devices in the vacuum chamber. After the source gas supplied from the reaction chamber is supplied toward the pedestal, the source gas is let flow outward in a radial direction of the silicon carbide single crystal between the reaction chamber and the silicon carbide single crystal and is discharged through the outlet.
    Type: Application
    Filed: July 24, 2012
    Publication date: May 8, 2014
    Applicant: DENSO CORPORATION
    Inventor: Kazukuni Hara
  • Publication number: 20120152165
    Abstract: An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a surface of a seed crystal made from a silicon carbide single crystal substrate by supplying a material gas for silicon carbide from below the seed crystal. The apparatus includes a base having a first side and a second side opposite to the first side. The seed crystal is mounded on the first side of the base. The apparatus further includes a purge gas introduction mechanism for supporting the base and for supplying a purge gas to the base from the second side of the base. The base has a purge gas introduction path for discharging the supplied purge gas from the base toward an outer edge of the seed crystal.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: DENSO CORPORATION
    Inventors: Kazukuni HARA, Yuuichirou Tokuda
  • Publication number: 20120152166
    Abstract: An apparatus for manufacturing a silicon carbide single crystal grows the silicon carbide single crystal on a seed crystal by supplying a material gas from below the seed crystal. The apparatus includes a heating container and a base located in the heating container. The seed crystal is mounded on the base. The apparatus further includes a first inlet for causing a purge gas to flow along an inner wall surface of the heating container, a purge gas source for supplying the purge gas to the first inlet, a second inlet for causing the purge gas to flow along an outer wall surface of the base, and a mechanism for supporting the base and for supplying the purge gas to the base from below the base.
    Type: Application
    Filed: December 14, 2011
    Publication date: June 21, 2012
    Applicant: DENSO CORPORATION
    Inventors: Yuuichirou TOKUDA, Kazukuni Hara, Jun Kojima
  • Publication number: 20110155051
    Abstract: A manufacturing apparatus for growing a SiC single crystal on a surface of a seed crystal that is made of a SiC single crystal substrate by supplying a source gas of SiC from a lower side of a vacuum chamber toward the seed crystal includes a pedestal, a rod member, and a cooling system. The pedestal is disposed in the vacuum chamber. The pedestal has a first surface on which the seed crystal is disposed and a second surface opposed to the first surface. The rod member holds the pedestal. The cooling system includes a temperature control pipe and a coolant temperature controller. The temperature control pipe is disposed on the second surface side of the pedestal. The coolant temperature controller controls a temperature of a coolant that flows to the temperature control pipe.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 30, 2011
    Applicant: DENSO CORPORATION
    Inventor: Kazukuni HARA
  • Publication number: 20090223447
    Abstract: An apparatus for producing a silicon carbide single crystal includes a vacuum chamber, a reaction container, a gas introducing pipe, a cooler, and a shielding part. The reaction container is disposed in the vacuum chamber and defines an internal space where a silicon carbide single crystal substrate is disposed as a seed crystal. The gas introducing pipe is supplies a mixed gas to the silicon carbide single crystal substrate through an opening portion provided at the reaction container. The cooler is disposed adjacent to the gas introducing pipe and is separated from the reaction container. The shielding part is disposed between the cooler and the internal space of the reaction container for restricting fluid leaking from the cooler from scattering in the internal space.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 10, 2009
    Applicant: DENSO CORPORATION
    Inventor: Kazukuni Hara
  • Patent number: 7217323
    Abstract: A method for manufacturing a silicon carbide single crystal includes the steps of: setting a substrate as a seed crystal in a reactive chamber; introducing a raw material gas into the reactive chamber; growing a silicon carbide single crystal from the substrate; heating the gas at an upstream side from the substrate in a gas flow path; keeping a temperature of the substrate at a predetermined temperature lower than the gas so that the single crystal is grown from the substrate; heating a part of the gas, which is a non-reacted raw material gas and does not contribute to crystal growth, after passing through the substrate; and absorbing a non-reacted raw material gas component in the non-reacted raw material gas with an absorber.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: May 15, 2007
    Assignee: Denso Corporation
    Inventors: Naohiro Sugiyama, Yasuo Kitou, Emi Makino, Kazukuni Hara, Kouki Futatsuyama, Atsuto Okamoto
  • Patent number: 7147714
    Abstract: When a SiC substrate is heated up to around 1800°C., sublimation of SiC occurs from the SiC substrate. Moreover, temperature of the front surface of the SiC substrate is lower than that of the back surface of the SiC substrate. Therefore, sublimation gas sublimed from a back-surface vicinity of the substrate, where temperature is high, moves to a front-surface vicinity of the substrate, where temperature is low, through the hollow micro-pipe defect. Epitaxial growth proceeds on the front surface of the substrate while the sublimation gas is recrystallized at the front-surface vicinity of the substrate, so that the micro-pipe defect is occluded.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: December 12, 2006
    Assignee: Denso Corporation
    Inventors: Masami Naito, Kazukuni Hara, Fusao Hirose, Shoichi Onda