Patents by Inventor Kazuma Shimamoto

Kazuma Shimamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11289429
    Abstract: A vertically alternating sequence of continuous insulating layers and continuous sacrificial material layers is formed over a substrate. Memory stack structures are formed through the vertically alternating sequence. Divider trenches and slit trenches are formed such that the divider trenches laterally extend along a first horizontal direction and divide the vertically alternating sequence into a plurality of alternating stacks of insulating layers and sacrificial material layers, and the slit trenches laterally extend along a second horizontal direction that is perpendicular to the first horizontal direction. The sacrificial material layers are replaced with electrically conductive layers employing the divider trenches as a conduit for an etchant and for a reactant. Each of the divider trenches and the slit trenches are filled with material portions to provide a plurality of divider trench fill structures in the divider trenches and to provide a plurality of slit trench fill structures in the slit trenches.
    Type: Grant
    Filed: October 7, 2019
    Date of Patent: March 29, 2022
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventor: Kazuma Shimamoto
  • Patent number: 11011506
    Abstract: A bonded assembly includes a memory die including a three-dimensional memory array located on a first single crystalline semiconductor substrate, and a logic die including a peripheral circuitry located on a second single crystalline semiconductor substrate and bonded to the memory die. The three-dimensional memory array includes word lines and bit lines. The logic die includes field effect transistors having semiconductor channels configured to flow electrical current along a channel direction that is parallel to the bit lines or word lines. Different crystallographic orientations are used for the first and second single crystalline semiconductor substrates. The crystallographic orientations of the first single crystalline semiconductor substrate are selected to minimize stress deformation of the memory chip, while the crystallographic orientations of the second single crystalline semiconductor substrate are selected to maximize device performance of the peripheral circuitry.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: May 18, 2021
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Naohiro Hosoda, Kazuma Shimamoto, Tetsuya Shirasu, Yuji Fukano, Akio Nishida
  • Publication number: 20210104472
    Abstract: A vertically alternating sequence of continuous insulating layers and continuous sacrificial material layers is formed over a substrate. Memory stack structures are formed through the vertically alternating sequence. Divider trenches and slit trenches are formed such that the divider trenches laterally extend along a first horizontal direction and divide the vertically alternating sequence into a plurality of alternating stacks of insulating layers and sacrificial material layers, and the slit trenches laterally extend along a second horizontal direction that is perpendicular to the first horizontal direction. The sacrificial material layers are replaced with electrically conductive layers employing the divider trenches as a conduit for an etchant and for a reactant. Each of the divider trenches and the slit trenches are filled with material portions to provide a plurality of divider trench fill structures in the divider trenches and to provide a plurality of slit trench fill structures in the slit trenches.
    Type: Application
    Filed: October 7, 2019
    Publication date: April 8, 2021
    Inventor: Kazuma SHIMAMOTO
  • Publication number: 20200258876
    Abstract: A bonded assembly includes a memory die including a three-dimensional memory array located on a first single crystalline semiconductor substrate, and a logic die including a peripheral circuitry located on a second single crystalline semiconductor substrate and bonded to the memory die. The three-dimensional memory array includes word lines and bit lines. The logic die includes field effect transistors having semiconductor channels configured to flow electrical current along a channel direction that is parallel to the bit lines or word lines. Different crystallographic orientations are used for the first and second single crystalline semiconductor substrates. The crystallographic orientations of the first single crystalline semiconductor substrate are selected to minimize stress deformation of the memory chip, while the crystallographic orientations of the second single crystalline semiconductor substrate are selected to maximize device performance of the peripheral circuitry.
    Type: Application
    Filed: April 14, 2020
    Publication date: August 13, 2020
    Inventors: Naohiro HOSODA, Kazuma SHIMAMOTO, Tetsuya SHIRASU, Yuji FUKANO, Akio NISHIDA
  • Patent number: 10665580
    Abstract: A bonded assembly includes a memory die including a three-dimensional memory array located on a first single crystalline semiconductor substrate, and a logic die including a peripheral circuitry located on a second single crystalline semiconductor substrate and bonded to the memory die. The three-dimensional memory array includes word lines and bit lines. The logic die includes field effect transistors having semiconductor channels configured to flow electrical current along a channel direction that is parallel to the bit lines or word lines. Different crystallographic orientations are used for the first and second single crystalline semiconductor substrates. The crystallographic orientations of the first single crystalline semiconductor substrate are selected to minimize stress deformation of the memory chip, while the crystallographic orientations of the second single crystalline semiconductor substrate are selected to maximize device performance of the peripheral circuitry.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: May 26, 2020
    Assignee: SANDISK TECHNOLOGIES LLC
    Inventors: Naohiro Hosoda, Kazuma Shimamoto, Tetsuya Shirasu, Yuji Fukano, Akio Nishida
  • Patent number: 9461049
    Abstract: Provided is a semiconductor device including first and second semiconductor pillars formed on a surface of a semiconductor substrate and aligning in a first direction; a first interconnect extending in a second direction intersecting with the first direction and provided between the first and second semiconductor pillars; and a first contact pad located over the first interconnect, the first contact pad being in contact with and electrically connected to the first semiconductor pillar at a side surface thereof, while being electrically isolated from the second semiconductor pillar.
    Type: Grant
    Filed: May 7, 2015
    Date of Patent: October 4, 2016
    Assignee: PS4 Luxco S.a.r.l.
    Inventor: Kazuma Shimamoto
  • Publication number: 20150243666
    Abstract: Provided is a semiconductor device including first and second semiconductor pillars formed on a surface of a semiconductor substrate and aligning in a first direction; a first interconnect extending in a second direction intersecting with the first direction and provided between the first and second semiconductor pillars; and a first contact pad located over the first interconnect, the first contact pad being in contact with and electrically connected to the first semiconductor pillar at a side surface thereof, while being electrically isolated from the second semiconductor pillar.
    Type: Application
    Filed: May 7, 2015
    Publication date: August 27, 2015
    Inventor: Kazuma SHIMAMOTO
  • Patent number: 9035368
    Abstract: Provided is a semiconductor device including first and second semiconductor pillars formed on a surface of a semiconductor substrate and aligning in a first direction; a first interconnect extending in a second direction intersecting with the first direction and provided between the first and second semiconductor pillars; and a first contact pad located over the first interconnect, the first contact pad being in contact with and electrically connected to the first semiconductor pillar at a side surface thereof, while being electrically isolated from the second semiconductor pillar.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: May 19, 2015
    Assignee: PS4 LUXCO S.A.R.L.
    Inventor: Kazuma Shimamoto
  • Publication number: 20110104868
    Abstract: A method of forming a semiconductor device include the following processes. A groove is formed in a semiconductor substrate. A first insulating film is formed on a bottom surface of the groove and a second insulating film on a side surface of the groove. The second insulating film is thinner than the first insulating film. A conductive layer is formed on the first insulating film.
    Type: Application
    Filed: October 26, 2010
    Publication date: May 5, 2011
    Applicant: ELPIDA MEMORY, INC.
    Inventors: Shingo UJIHARA, Kazuma SHIMAMOTO
  • Publication number: 20100072542
    Abstract: Modification of an SOD film is promoted in a hot oxidizing atmosphere. Elements under a liner film and a semiconductor substrate are prevented from being damaged by oxidation. A semiconductor device includes a recess portion, a first liner film and a second liner film sequentially formed on inner wall side surfaces of the recess portion, the second liner film containing an oxygen atom, and an insulating region filled in the recess portion. The first liner film has a higher oxidation resistance than the second liner film.
    Type: Application
    Filed: September 14, 2009
    Publication date: March 25, 2010
    Inventors: Tomohiro Kadoya, Kazuma Shimamoto