Patents by Inventor Kazuma Tomizuka

Kazuma Tomizuka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8110671
    Abstract: The specification relates to a method for producing a chimeric non-human animal, which comprises preparing a microcell containing a foreign chromosome(s) or a fragment(s) thereof and transferring the foreign chromosome(s) or fragment(s) thereof into a pluripotent cell by fusion with the microcell; a chimeric non-human animal which can be produced by the above method and its progeny; tissues and cells derived therefrom; and a method for using the same. Further, a pluripotent cell containing a foreign chromosome(s) or a fragment(s) thereof, a method for producing the same, and a method for using the same are also provided. Moreover, a pluripotent cell in which at least two endogenous genes are disrupted, and a method for producing the same by homologous recombination are provided.
    Type: Grant
    Filed: May 8, 2007
    Date of Patent: February 7, 2012
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: Kazuma Tomizuka, Hitoshi Yoshida, Kazunori Hanaoka, Mitsuo Oshimura, Isao Ishida
  • Publication number: 20110237514
    Abstract: This invention relates to a pharmaceutical composition for treatment of a bone disease comprising, as an active ingredient, a protein comprising an extracellular cysteine-rich domain, which is from the Frizzled receptor selected from the group consisting of mammalian animal-derived Frizzled 1, Frizzled 2, and Frizzled 7 and has activity of increasing bone mass, bone density, and/or bone strength, or a mutant of such domain having sequence identity of 85% or higher to the amino acid sequence of the domain and having activity of increasing bone mass, bone density, and/or bone strength, or a vector comprising a nucleic acid encoding the protein.
    Type: Application
    Filed: September 30, 2009
    Publication date: September 29, 2011
    Applicant: KYOWA HAKKO KIRIN CO., LTD.
    Inventors: Makoto Kakitani, Kazuma Tomizuka
  • Publication number: 20110231943
    Abstract: In general, the invention features genetically modified non-human mammals (e.g., bovines and other ungulates), and methods of making these mammals. In particular, the invention features transgenic ungulates having reduced levels of endogenous IgM heavy chain and/or prion protein.
    Type: Application
    Filed: April 6, 2011
    Publication date: September 22, 2011
    Applicant: KYOWA HAKKO KIRIN CO., LTD.
    Inventors: JAMES M. ROBL, YOSHIMI KUROIWA, POOTHAPPILLAI KASINATHAN, ISAO ISHIDA, KAZUMA TOMIZUKA
  • Publication number: 20110151518
    Abstract: The present invention relates to a method for producing a modified foreign chromosome(s) or a fragment(s) thereof, which comprises the steps of: (a) preparing a microcell comprising a foreign chromosome(s) or a fragment(s) thereof, and transferring said foreign chromosome(s) or a fragment(s) into a cell with high homologous recombination efficiency through its fusion with said microcell; (b) in said cell with high homologous recombination efficiency, inserting a targeting vector by homologous recombination into a desired site of said foreign chromosome(s) or a fragment(s) thereof, and/or a desired site of a chromosome(s) derived from said cell with high homologous recombination efficiency, thereby marking said desired site; and (c) in said cell with high homologous recombination efficiency, causing deletion and/or translocation to occur at the marked site of said foreign chromosome(s) or a fragment(s) thereof.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 23, 2011
    Inventors: Kazuma Tomizuka, Hitoshi Yoshida, Kazunori Hanaoka, Mitsuo Oshimura, Isao Ishida, Yoshimi Kuroiwa
  • Patent number: 7951381
    Abstract: The invention relates to pharmaceutical compositions comprising gastrointestinal proliferative factor (GIPF) polynucleotides and polypeptides. The invention further relates to the therapeutic use of GIPF to prevent or treat conditions or disorders associated with the degeneration of the epithelial mucosa.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: May 31, 2011
    Assignees: Kyowa Hakko Kirin Co., Ltd., Arca Biopharma Inc.
    Inventors: Walter Funk, Makoto Kakitani, Takeshi Oshima, Eun Ju Park, Mikio Yagi, Kazuma Tomizuka
  • Patent number: 7928285
    Abstract: In general, the invention features genetically modified non-human mammals (e.g., bovines and other ungulates), and methods of making these mammals. In particular, the invention features transgenic ungulates having reduced levels of endogenous IgM heavy chain and/or prion protein.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: April 19, 2011
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: James M. Robl, Yoshimi Kuroiwa, Poothappillai Kasinathan, Isao Ishida, Kazuma Tomizuka
  • Publication number: 20110067122
    Abstract: The present invention relates to the production of a transgenic ungulate which comprises a genetic modification that results in inactivation and loss of expression of its endogenous antibodies, and the expression of xenogenous antibodies, preferably human antibodies. This is effected by inactivation of the IgM heavy chain expression and, optionally, by inactivation of the Ig light chain expression, and by the further introduction of an artificial chromosome which results in the expression of non-bovine antibodies, preferably human antibodies.
    Type: Application
    Filed: February 9, 2009
    Publication date: March 17, 2011
    Applicant: Kyowa Hakko Kirin Co., Ltd.
    Inventors: James M. Robl, Richard A. Goldsby, Stacy E. Ferguson, Yoshimi Kuroiwa, Kazuma Tomizuka, Isao Ishida, Barbara A. Osborne
  • Publication number: 20110023138
    Abstract: This invention relates to a mammalian artificial chromosome vector, which retains a human chromosome 7 fragment comprising human cytochrome P450 genes and is transmittable to progeny, wherein the human chromosome 7 fragment retains a region of approximately 1 MbĀ±500 Kb in size comprising at least a human CYP3A gene cluster, which region is located between chromosome markers AC004922 and AC073842, and to a non-human mammalian animal retaining the vector.
    Type: Application
    Filed: October 14, 2008
    Publication date: January 27, 2011
    Applicants: National University Corporation Tottori University, Chromocenter Inc.
    Inventors: Mitsuo Oshimura, Yasuhiro Kazuki, Takashi Matsuoka, Kazuma Tomizuka, Takeshi Oshima
  • Patent number: 7868223
    Abstract: The present invention relates to a method for producing a modified foreign chromosome(s) or a fragment(s) thereof, which comprises the steps of: (a) preparing a microcell comprising a foreign chromosome(s) or a fragment(s) thereof, and transferring said foreign chromosome(s) or a fragment(s) into a cell with high homologous recombination efficiency through its fusion with said microcell; (b) in said cell with high homologous recombination efficiency, inserting a targeting vector by homologous recombination into a desired site of said foreign chromosome(s) or a fragment(s) thereof, and/or a desired site of a chromosome(s) derived from said cell with high homologous recombination efficiency, thereby marking said desired site; and (c) in said cell with high homologous recombination efficiency, causing deletion and/or translocation to occur at the marked site of said foreign chromosome(s) or a fragment(s) thereof.
    Type: Grant
    Filed: May 7, 2008
    Date of Patent: January 11, 2011
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: Kazuma Tomizuka, Hitoshi Yoshida, Kazunori Hanaoka, Mitsuo Oshimura, Isao Ishida, Yoshimi Kuroiwa
  • Publication number: 20110003319
    Abstract: The present invention provides novel transgenic nonhuman mammals capable of producing human sequence antibodies, as well as methods of producing and using these antibodies.
    Type: Application
    Filed: September 9, 2010
    Publication date: January 6, 2011
    Applicants: KYOWA HAKKO KIRIN CO., LTD., MEDAREX, INC.
    Inventors: KAZUMA TOMIZUKA, ISAO ISHIDA, NILS LONBERG, EDWARD L. HALK
  • Patent number: 7816578
    Abstract: The present invention provides novel transgenic nonhuman mammals capable of producing human sequence antibodies, as well as methods of producing and using these antibodies.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: October 19, 2010
    Assignees: Kyowa Hakko Kirin Co., Ltd., Medarex, Inc.
    Inventors: Kazuma Tomizuka, Isao Ishida, Nils Lonberg, Edward L. Halk
  • Patent number: 7807863
    Abstract: The invention provides cloned transgenic ungulates (e.g., bovines) in which prion protein activity is reduced by one or more genetically engineered mutations. Desirably, these transgenic bovines are also genetically modified to express xenogenous (e.g., human) antibodies. Because of their resistance to prion-related diseases such as bovine spongiform encephalopy (also known as mad cow disease), these bovines are a safer source of human antibodies for pharmaceutical uses and a safer source of agricultural products.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: October 5, 2010
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: James M. Robl, Yoshimi Kuroiwa, Kazuma Tomizuka, Isao Ishida
  • Patent number: 7803981
    Abstract: The invention features novel methods for the production of large quantities of xenogenous antibodies, such as human antibodies. Preferably, this result is effected by inactivation of IgM heavy chain expression and, optionally, by inactivation of Ig light chain expression, and by the further introduction of an artificial chromosome which results in the expression of xenogenous antibodies (e.g., non-bovine antibodies), preferably human antibodies.
    Type: Grant
    Filed: June 20, 2007
    Date of Patent: September 28, 2010
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: James M. Robl, Philippe Collas, Eddie Sullivan, Poothappillai Kasinathan, Richard A. Goldsby, Yoshimi Kuroiwa, Kazuma Tomizuka, Isao Ishida, Barbara Osborne
  • Publication number: 20100137210
    Abstract: The invention relates to pharmaceutical compositions comprising gastrointestinal proliferative factor (GIPF) polynucleotides and polypeptides. The invention further relates to the therapeutic use of GIPF to prevent or treat conditions or disorders associated with the degeneration of the epithelial mucosa.
    Type: Application
    Filed: October 27, 2009
    Publication date: June 3, 2010
    Inventors: Walter Funk, Makoto Kakitani, Takeshi Oshima, Eun Ju Park, Mikio Yagi, Kazuma Tomizuka
  • Publication number: 20100011452
    Abstract: The present invention relates to a method for producing a chimeric non-human animal expressing a desired protein, and a chimeric non-human animal or an offspring thereof expressing a desired protein. The present invention also relates to a method for analyzing the functions of a desired protein or a gene encoding the protein by comparing the phenotype of the above chimeric non-human animal with that of a corresponding wild-type animal.
    Type: Application
    Filed: June 9, 2009
    Publication date: January 14, 2010
    Inventors: Kazuma TOMIZUKA, Makoto Kakitani, Takashi Yoneya, Isao Ishida
  • Publication number: 20100011454
    Abstract: This invention relates to a human artificial chromosome (HAC) vector carrying a human chromosome-derived centromere, a subtelomere sequence, and a telomere sequence, to a human cell medicine or human cells comprising the HAC vector, to methods for preparing the HAC vector and human cells, and to methods for producing a therapeutic protein using the HAC vector.
    Type: Application
    Filed: July 6, 2007
    Publication date: January 14, 2010
    Inventors: Minoru Kakeda, Kazuma Tomizuka, Mitsuo Oshimura, Yasuhiro Kazuki
  • Publication number: 20090253902
    Abstract: The specification relates to a method for producing a chimeric non-human animal, which comprises preparing a microcell containing a foreign chromosome(s) or a fragment(s) thereof and transferring the foreign chromosome(s) or fragment(s) thereof into a pluripotent cell by fusion with the microcell; a chimeric non-human animal which can be produced by the above method and its progeny; tissues and cells derived therefrom; and a method for using the same. Further, a pluripotent cell containing a foreign chromosome(s) or a fragment(s) thereof, a method for producing the same, and a method for using the same are also provided. Moreover, a pluripotent cell in which at least two endogenous genes are disrupted, and a method for producing the same by homologous recombination are provided.
    Type: Application
    Filed: May 8, 2007
    Publication date: October 8, 2009
    Inventors: Kazuma Tomizuka, Hitoshi Yoshida, Kazunori Hanaoka, Mitsuo Oshimura, Isao Ishida
  • Publication number: 20090222935
    Abstract: In general, the invention features genetically modified non-human mammals (e.g., bovines and other ungulates), and methods of making these mammals. In particular, the invention features transgenic ungulates having reduced levels of endogenous IgM heavy chain and/or prion protein.
    Type: Application
    Filed: June 25, 2008
    Publication date: September 3, 2009
    Inventors: James M. Robl, Yoshimi Kuroiwa, Poothappillai Kasinathan, Isao Ishida, Kazuma Tomizuka
  • Patent number: 7576258
    Abstract: The present invention provides novel transgenic nonhuman mammals capable of producing human sequence antibodies, as well as methods of producing and using these antibodies.
    Type: Grant
    Filed: September 30, 2005
    Date of Patent: August 18, 2009
    Assignees: Medarex, Inc., Kyowa Hakko Kirin Co., Ltd.
    Inventors: Kazuma Tomizuka, Isao Ishida, Nils Lonberg, Edward L. Halk
  • Publication number: 20090165154
    Abstract: The invention provides cloned transgenic ungulates (e.g., bovines) in which prion protein activity is reduced by one or more genetically engineered mutations. Desirably, these transgenic bovines are also genetically modified to express xenogenous (e.g., human) antibodies. Because of their resistance to prion-related diseases such as bovine spongiform encephalopy (also known as mad cow disease), these bovines are a safer source of human antibodies for pharmaceutical uses and a safer source of agricultural products.
    Type: Application
    Filed: September 5, 2008
    Publication date: June 25, 2009
    Inventors: James M. Robl, Yoshimi Kuroiwa, Kazuma Tomizuka, Isao Ishida