Patents by Inventor Kazumasa Shintani

Kazumasa Shintani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9865382
    Abstract: Provided are raw material alloy flakes for a rare earth sintered magnet and a method for producing the same. The alloy flakes have a roll-cooled face, and (1) contain at least one R selected from rare earth metal elements including Y, B, and the balance M including iron, at a particular ratio; (2) as observed in a micrograph at a magnification of 100× of its roll-cooled face, have not less than 5 crystals each of which is a dendrite grown radially from a point of crystal nucleation, and crosses a line segment corresponding to 880 ?m; and (3) as observed in a micrograph at a magnification of 200× of its section taken generally perpendicularly to its roll-cooled face, have an average distance between R-rich phases of not less than 1 ?m and less than 10 ?m.
    Type: Grant
    Filed: July 30, 2012
    Date of Patent: January 9, 2018
    Assignee: SANTOKU CORPORATION
    Inventors: Shinya Tabata, Kazumasa Shintani, Takuya Onimura
  • Patent number: 8105446
    Abstract: Disclosed are a method for producing alloy flakes for rare earth sintered magnets, which makes uniform the intervals, size, orientation, and shape of the R-rich region and the dendrites of the 2-14-1 phase, and alloy flakes for a rare earth sintered magnet obtained by the method. A rare earth sintered magnet employing the alloy flakes is also disclosed.
    Type: Grant
    Filed: April 8, 2010
    Date of Patent: January 31, 2012
    Assignee: Santoku Corporation
    Inventors: Kazumasa Shintani, Ryo Murakami, Kazuhiko Yamamoto
  • Publication number: 20100200121
    Abstract: The invention provides a method for producing alloy flakes for rare earth sintered magnets, which makes uniform the intervals, size, orientation, and shape of the R-rich region and the dendrites of the 2-14-1 phase, which inhibits formation of chill, and which produces flakes that are pulverized into powder of a uniform particle size in the pulverization step in the production of a rare earth sintered magnet, and that are pulverized into powder compactable into a product with a controlled shrink ratio, and alloy flakes for a rare earth sintered magnet obtained by the method, and a rare earth sintered magnet having excellent magnetic properties.
    Type: Application
    Filed: April 8, 2010
    Publication date: August 12, 2010
    Applicant: SANTOKU CORPORATION
    Inventors: Kazumasa Shintani, Ryo Murakami, Kazuhiko Yamamoto
  • Patent number: 7722726
    Abstract: The invention provides a method for producing alloy flakes for rare earth sintered magnets, which makes uniform the intervals, size, orientation, and shape of the R-rich region and the dendrites of the 2-14-1 phase, which inhibits formation of chill, and which produces flakes that are pulverized into powder of a uniform particle size in the pulverization step in the production of a rare earth sintered magnet, and that are pulverized into powder compactable into a product with a controlled shrink ratio, and alloy flakes for a rare earth sintered magnet obtained by the method, and a rare earth sintered magnet having excellent magnetic properties.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: May 25, 2010
    Assignee: Santoku Corporation
    Inventors: Kazumasa Shintani, Ryo Murakami, Kazuhiko Yamamoto
  • Patent number: 7338566
    Abstract: The present invention relates to a Sm—Co based magnet alloy useful as a raw material for producing magnets having high magnetic properties, such as sintered or bonded magnets, methods for producing such an alloy, and sintered or bonded magnets having excellent corrosion resistance and high magnetic properties, such as high coercivity and good squareness. The magnetic alloy is composed of an alloy represented by the formula RM with 32.5 to 35.5 wt % R such as Sm and the balance of M such as Co, wherein ratio (B/A) of the X-ray diffraction intensity (B) corresponding to the (119) plane of R2M7 phase to the X-ray diffraction intensity (A) corresponding to the (111) plane of RM5 phase is not higher than 0.1.
    Type: Grant
    Filed: November 8, 2002
    Date of Patent: March 4, 2008
    Assignee: Santoku Corporation
    Inventors: Kenji Konishi, Kazumasa Shintani
  • Publication number: 20070199624
    Abstract: The invention provides a method for producing alloy flakes for rare earth sintered magnets, which makes uniform the intervals, size, orientation, and shape of the R-rich region and the dendrites of the 2-14-1 phase, which inhibits formation of chill, and which produces flakes that are pulverized into powder of a uniform particle size in the pulverization step in the production of a rare earth sintered magnet, and that are pulverized into powder compactable into a product with a controlled shrink ratio, and alloy flakes for a rare earth sintered magnet obtained by the method, and a rare earth sintered magnet having excellent magnetic properties.
    Type: Application
    Filed: March 31, 2005
    Publication date: August 30, 2007
    Inventors: Kazumasa Shintani, Ryo Murakami, Kazuhiko Yamamoto
  • Publication number: 20040244876
    Abstract: The present invention relates to a Sm—Co based magnet alloy useful as a raw material for producing magnets having high magnetic properties, such as sintered or bonded magnets, methods for producing such an alloy, and sintered or bonded magnets having excellent corrosion resistance and high magnetic properties, such as high coercivity and good squareness. The magnetic alloy is composed of an alloy represented by the formula RM with 32.5 to 35.5 wt % R such as Sm and the balance of M such as Co, wherein ratio (B/A) of the X-ray diffraction intensity (B) corresponding to the (119) plane of R2M7 phase to the X-ray diffraction intensity (A) corresponding to the (111) plane of RM5 phase is not higher than 0.1.
    Type: Application
    Filed: May 3, 2004
    Publication date: December 9, 2004
    Inventors: Kenji Konishi, Kazumasa Shintani