Patents by Inventor Kazunari Asao

Kazunari Asao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11276552
    Abstract: There are provided: a method for image adjustment using a charged particle beam device, and a charged particle beam system, capable of appropriately adjusting a contrast and brightness as well as a focus for a measurement region present in a deep portion of a sample even when a depth of the measurement region is unknown. A method for image adjustment performed by a computer system controlling a charged particle beam device includes: by the computer system, specifying a measurement region from a captured image of a sample; performing centering processing based on the specified measurement region; extracting the measurement region in a field of view that has undergone the centering processing or the image that has undergone the centering processing; adjusting a contrast and brightness for the extracted measurement region; and adjusting a focus for the measurement region in which the contrast and brightness have been adjusted.
    Type: Grant
    Filed: November 18, 2020
    Date of Patent: March 15, 2022
    Assignee: Hitachi High-Tech Corporation
    Inventors: Yuki Tomizawa, Kazunari Asao, Kazuyuki Hirao
  • Publication number: 20210183611
    Abstract: There are provided: a method for image adjustment using a charged particle beam device, and a charged particle beam system, capable of appropriately adjusting a contrast and brightness as well as a focus for a measurement region present in a deep portion of a sample even when a depth of the measurement region is unknown. A method for image adjustment performed by a computer system controlling a charged particle beam device includes: by the computer system, specifying a measurement region from a captured image of a sample; performing centering processing based on the specified measurement region; extracting the measurement region in a field of view that has undergone the centering processing or the image that has undergone the centering processing; adjusting a contrast and brightness for the extracted measurement region; and adjusting a focus for the measurement region in which the contrast and brightness have been adjusted.
    Type: Application
    Filed: November 18, 2020
    Publication date: June 17, 2021
    Inventors: Yuki TOMIZAWA, Kazunari ASAO, Kazuyuki HIRAO
  • Patent number: 10991542
    Abstract: The purpose of the present invention is to provide a charged particle beam device which adjusts brightness and contrast or adjusts focus and the like appropriately in a short time even if there are few detected signals. Proposed as an aspect for achieving this purpose is a charged particle beam device provided with: a detector for detecting charged particles obtained on the basis of irradiation of a specimen with a charged particle beam emitted from a charged particle source; and a control unit for processing a signal obtained on the basis of the output of the detector, wherein the control unit performs statistical processing on gray level values in a predetermined region of an image generated on the basis of the output of the detector, and executes signal processing for correcting a difference between a statistical value obtained by the statistical processing and reference data relating to the gray level values of the image.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 27, 2021
    Assignee: Hitachi High-Tech Corporation
    Inventors: Ryota Watanabe, Yuko Sasaki, Kazunari Asao, Makoto Suzuki, Wataru Mori, Minoru Yamazaki
  • Publication number: 20210055098
    Abstract: Overlay shift amount measurement with high accuracy becomes possible. A charged particle beam system includes a computer system that measures an overlay shift amount between a first layer of a sample and a second layer lower than the first layer based on output of a detector. The computer system generates first images with respect to the first layer and second images with respect to the second layer based on the output of the detector, generates a first added image by adding the first images by a first added number of images, and generates a second added image by adding the second image by a second added number of images greater than the first added number of images. An overlay shift amount between the first layer and the second layer is measured based on the first added image and the second added image.
    Type: Application
    Filed: May 29, 2020
    Publication date: February 25, 2021
    Inventors: Takuma YAMAKI, Takuma YAMAMOTO, Yasunori GOTO, Tomohiro TAMORI, Kazunari ASAO
  • Publication number: 20190362931
    Abstract: The purpose of the present invention is to provide a charged particle beam device which adjusts brightness and contrast or adjusts focus and the like appropriately in a short time even if there are few detected signals. Proposed as an aspect for achieving this purpose is a charged particle beam device provided with: a detector for detecting charged particles obtained on the basis of irradiation of a specimen with a charged particle beam emitted from a charged particle source; and a control unit for processing a signal obtained on the basis of the output of the detector, wherein the control unit performs statistical processing on gray level values in a predetermined region of an image generated on the basis of the output of the detector, and executes signal processing for correcting a difference between a statistical value obtained by the statistical processing and reference data relating to the gray level values of the image.
    Type: Application
    Filed: January 27, 2017
    Publication date: November 28, 2019
    Inventors: Ryota WATANABE, Yuko SASAKI, Kazunari ASAO, Makoto SUZUKI, Wataru MORI, Minoru YAMAZAKI
  • Patent number: 8923614
    Abstract: In order to solve the problem that the resolution of a back-scattered electron image without a contrast difference between materials with close atomic numbers is low, an image processing apparatus that performs an image process on a back-scattered electron image as an input image includes: a material peak detection unit that determines a peak luminance value with a peak of a frequency of a luminance histogram based on a luminance value obtained for each measurement position by using the input image as an input and information about material-dependent back-scattered electron generation efficiency, and that outputs the peak luminance value for each material; and an image information adjustment unit that emphasizes a material-dependent contrast on the basis of the input image and the peak luminance value for each material.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: December 30, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hideki Itai, Zhigang Wang, Kazunari Asao
  • Patent number: 8859962
    Abstract: A charged-particle-beam device is characterized in having a control value for an aligner coil (29) being determined by: a coil current and an electrode applied-voltage at a control value for objectives (30, 31), which is an electromagnetic-field superposition lens; a control value for image-shift coils (27, 28); and the acceleration voltage of the charged-particle-beam. By doing this, it has become possible to avoid image disturbances that occur on images to be displayed at boundaries between charged areas and non-charged areas, and provide a charged-particle-beam device that obtains clear images without any unevenness in brightness.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: October 14, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Noritsugu Takahashi, Muneyuki Fukuda, Manabu Yano, Hirohiko Kitsuki, Kazunari Asao, Tomoyasu Shojo
  • Patent number: 8835844
    Abstract: The present invention has the object of providing charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: September 16, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Ezumi, Yoichi Ose, Akira Ikegami, Hideo Todokoro, Tatsuaki Ishijima, Takahiro Sato, Ritsuo Fukaya, Kazunari Asao
  • Publication number: 20140197313
    Abstract: A charged-particle-beam device is characterized in having a control value for an aligner coil (29) being determined by: a coil current and an electrode applied-voltage at a control value for objectives (30, 31), which is an electromagnetic-field superposition lens; a control value for image-shift coils (27, 28); and the acceleration voltage of the charged-particle-beam. By doing this, it has become possible to avoid image disturbances that occur on images to be displayed at boundaries between charged areas and non-charged areas, and provide a charged-particle-beam device that obtains clear images without any unevenness in brightness.
    Type: Application
    Filed: March 17, 2014
    Publication date: July 17, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Noritsugu TAKAHASHI, Muneyuki FUKUDA, Manabu YANO, Hirohiko KITSUKI, Kazunari ASAO, Tomoyasu SHOJO
  • Publication number: 20130343649
    Abstract: In order to solve the problem that the resolution of a back-scattered electron image without a contrast difference between materials with close atomic numbers is low, an image processing apparatus that performs an image process on a back-scattered electron image as an input image includes: a material peak detection unit that determines a peak luminance value with a peak of a frequency of a luminance histogram based on a luminance value obtained for each measurement position by using the input image as an input and information about material-dependent back-scattered electron generation efficiency, and that outputs the peak luminance value for each material; and an image information adjustment unit that emphasizes a material-dependent contrast on the basis of the input image and the peak luminance value for each material.
    Type: Application
    Filed: March 8, 2013
    Publication date: December 26, 2013
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Hideki ITAI, Zhigang WANG, Kazunari ASAO
  • Patent number: 8581186
    Abstract: There is proposed a charged particle beam apparatus including: a plurality of noise removal filters that remove noise of an electrical signal; a measurement unit that measures the contrast-to-noise ratio after applying one of the noise removal filters; and a determination unit that determines a magnitude relationship between the contrast-to-noise ratio measured by the measurement unit and a threshold value set in advance.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: November 12, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Makoto Suzuki, Kazunari Asao
  • Patent number: 8487253
    Abstract: An object of the present invention is to provide a scanning electron microscope suitable for monitoring apparatus conditions of the microscope itself, irrespective of the presence of charge-up, specimen inclination, and the like. In order to achieve the object, proposed is a scanning electron microscope including a function to monitor the apparatus conditions on the basis of information obtained with an electron beam reflected before reaching a specimen. Specifically, for example, while applying a negative voltage to the specimen to reflect the electron beam before the electron beam reaches the specimen, and simultaneously supplying a predetermined signal to a deflector for alignment, the scanning electron microscope monitors changes of the detected positions of the reflected electrons of the electron beam. If the above-mentioned predetermined signal is under the condition where an alignment is properly performed, the changes of the detected positions of the electrons reflect deviation of an axis.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: July 16, 2013
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Minoru Yamazaki, Akira Ikegami, Hideyuki Kazumi, Manabu Yano, Kazunari Asao, Takeshi Mizuno, Yuki Ojima
  • Publication number: 20120119087
    Abstract: A charged-particle-beam device is characterized in having a control value for an aligner coil (29) being determined by: a coil current and an electrode applied-voltage at a control value for objectives (30, 31), which is an electromagnetic-field superposition lens; a control value for image-shift coils (27, 28); and the acceleration voltage of the charged-particle-beam. By doing this, it has become possible to avoid image disturbances that occur on images to be displayed at boundaries between charged areas and non-charged areas, and provide a charged-particle-beam device that obtains clear images without any unevenness in brightness.
    Type: Application
    Filed: July 13, 2010
    Publication date: May 17, 2012
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Noritsugu Takahashi, Muneyuki Fukuda, Manabu Yano, Hirohiko Kitsuki, Kazunari Asao, Tomoyasu Shojo
  • Publication number: 20120061566
    Abstract: An object of the present invention is to provide a scanning electron microscope suitable for monitoring apparatus conditions of the microscope itself, irrespective of the presence of charge-up, specimen inclination, and the like. In order to achieve the object, proposed is a scanning electron microscope including a function to monitor the apparatus conditions on the basis of information obtained with an electron beam reflected before reaching a specimen. Specifically, for example, while applying a negative voltage to the specimen to reflect the electron beam before the electron beam reaches the specimen, and simultaneously supplying a predetermined signal to a deflector for alignment, the scanning electron microscope monitors changes of the detected positions of the reflected electrons of the electron beam. If the above-mentioned predetermined signal is under the condition where an alignment is properly performed, the changes of the detected positions of the electrons reflect deviation of an axis.
    Type: Application
    Filed: November 18, 2011
    Publication date: March 15, 2012
    Applicant: Hitachi High-Technologies Corporation
    Inventors: Minoru YAMAZAKI, Akira IKEGAMI, Hideyuki KAZUMI, Manabu YANO, Kazunari ASAO, Takeshi MIZUNO, Yuki OJIMA
  • Patent number: 8080790
    Abstract: An object of the present invention is to provide a scanning electron microscope suitable for monitoring apparatus conditions of the microscope itself, irrespective of the presence of charge-up, specimen inclination, and the like. In order to achieve the object, proposed is a scanning electron microscope including a function to monitor the apparatus conditions on the basis of information obtained with an electron beam reflected before reaching a specimen. Specifically, for example, while applying a negative voltage to the specimen to reflect the electron beam before the electron beam reaches the specimen, and simultaneously supplying a predetermined signal to a deflector for alignment, the scanning electron microscope monitors changes of the detected positions of the reflected electrons of the electron beam. If the above-mentioned predetermined signal is under the condition where an alignment is properly performed, the changes of the detected positions of the electrons reflect deviation of an axis.
    Type: Grant
    Filed: February 25, 2009
    Date of Patent: December 20, 2011
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Minoru Yamazaki, Akira Ikegami, Hideyuki Kazumi, Manabu Yano, Kazunari Asao, Takeshi Mizuno, Yuki Ojima
  • Publication number: 20100294929
    Abstract: The present invention has the object of providing charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges.
    Type: Application
    Filed: February 23, 2010
    Publication date: November 25, 2010
    Inventors: Makoto Ezumi, Yoichi Ose, Akira Ikegami, Hideo Todokoro, Tatsuaki Ishijima, Takahiro Sato, Ritsuo Fukaya, Kazunari Asao
  • Patent number: 7700918
    Abstract: The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges.
    Type: Grant
    Filed: March 17, 2008
    Date of Patent: April 20, 2010
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Ezumi, Yoichi Ose, Akira Ikegami, Hideo Todokoro, Tatsuaki Ishijima, Takahiro Sato, Ritsuo Fukaya, Kazunari Asao
  • Publication number: 20090224170
    Abstract: An object of the present invention is to provide a scanning electron microscope suitable for monitoring apparatus conditions of the microscope itself, irrespective of the presence of charge-up, specimen inclination, and the like. In order to achieve the object, proposed is a scanning electron microscope including a function to monitor the apparatus conditions on the basis of information obtained with an electron beam reflected before reaching a specimen. Specifically, for example, while applying a negative voltage to the specimen to reflect the electron beam before the electron beam reaches the specimen, and simultaneously supplying a predetermined signal to a deflector for alignment, the scanning electron microscope monitors changes of the detected positions of the reflected electrons of the electron beam. If the above-mentioned predetermined signal is under the condition where an alignment is properly performed, the changes of the detected positions of the electrons reflect deviation of an axis.
    Type: Application
    Filed: February 25, 2009
    Publication date: September 10, 2009
    Inventors: Minoru YAMAZAKI, Akira Ikegami, Hideyuki Kazumi, Manabu Yano, Kazunari Asao, Takeshi Mizuno, Yuki Ojima
  • Publication number: 20080201091
    Abstract: The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges.
    Type: Application
    Filed: March 17, 2008
    Publication date: August 21, 2008
    Inventors: Makoto Ezumi, Yoichi Ose, Akira Ikegami, Hideo Todokoro, Tatsuaki Ishijima, Takahiro Sato, Ritsuo Fukaya, Kazunari Asao
  • Patent number: 7372028
    Abstract: The present invention has the object of providing a charged particle beam irradiation method ideal for reducing the focus offset, magnification fluctuation and measurement length error in charged particle beam devices. To achieve these objects, a method is disclosed in the invention for measuring the electrical potential distribution on the sample with a static electrometer while loaded by a loader mechanism. Another method is disclosed for measuring the local electrical charge at specified points on the sample, and isolating and measuring the wide area electrostatic charge quantity from those local electrostatic charges.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: May 13, 2008
    Assignee: Hitachi, Ltd.
    Inventors: Makoto Ezumi, Yoichi Ose, Akira Ikegami, Hideo Todokoro, Tatsuaki Ishijima, Takahiro Sato, Ritsuo Fukaya, Kazunari Asao