Patents by Inventor Kazunari Kurita

Kazunari Kurita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090256241
    Abstract: A method of manufacturing a thin silicon wafer by slicing a silicon single crystal includes: a thinning step S3 of polishing a rear surface of the silicon wafer to reduce the thickness of the silicon wafer after a device structure is formed on a front surface of the silicon wafer; a mirror surface forming step S4 of processing the rear surface of the silicon wafer into a mirror surface using a chemical mechanical polishing method; and a modifying step S5 of dispersing abrasive grains that are harder than those used to form the mirror surface in the mirror surface forming process and forming a damaged layer, serving as a gettering sink for heavy metal, on the rear surface of the silicon wafer using the chemical mechanical polishing method. The thickness T5b of the damaged layer W5b in a wafer depth direction is set by the chemical mechanical polishing method in the modifying step S5 to control the gettering capability of the damaged layer.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 15, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Kazunari KURITA, Shuichi OMOTE
  • Publication number: 20090258447
    Abstract: A method of detecting heavy metal in a semiconductor substrate, includes: a gate oxide film forming step of forming an organic oxide film by spin coating or a sol-gel process, and forming a metal/oxide film/semiconductor junction element by using a mercury probe method; and a step of detecting and quantifying heavy metal by calculating the surface concentration of the heavy metal from junction capacitance characteristics of the element.
    Type: Application
    Filed: April 13, 2009
    Publication date: October 15, 2009
    Applicant: SUMCO CORPORATION
    Inventor: Kazunari KURITA
  • Publication number: 20090252944
    Abstract: A silicon wafer is produced by subjecting a back face of a silicon wafer after the formation of a device structure to a given surface treatment so as to form a gettering sink layer having a good deflective strength.
    Type: Application
    Filed: March 24, 2009
    Publication date: October 8, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Kazunari KURITA, Shuichi Omote, Naoki Ikeda
  • Publication number: 20090242939
    Abstract: A wafer for backside illumination type solid imaging device has a plurality of pixels inclusive of a photoelectric conversion device and a charge transfer transistor at its front surface side and a light receiving surface at its back surface side, wherein said wafer is a SOI wafer obtained by forming a given active layer on a support substrate made of C-containing n-type or p-type semiconductor material through an insulating layer.
    Type: Application
    Filed: March 20, 2009
    Publication date: October 1, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Kazunari KURITA, Shuichi Omote
  • Publication number: 20090235861
    Abstract: A method of manufacturing a silicon single crystal with carbon doping in a chamber by using a Czochralski method is provided. In a step of placing a silicon raw material in a crucible, a carbon dopant is disposed at a distance of 5 cm or further away from the inner surface of the crucible, and in this state, a step of melting the silicon raw material is performed after the disposing step.
    Type: Application
    Filed: March 18, 2009
    Publication date: September 24, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Hideki FUJIWARA, Naoki IKEDA, Kazunari KURITA, Masataka HOURAI
  • Publication number: 20090226736
    Abstract: A method of manufacturing a silicon substrate includes: growing a silicon single crystal having a carbon concentration in the range of 1.0×1016 atoms/cm3 to 1.6×1017 atoms/cm3 and an initial oxygen concentration in the range of 1.4×1018 atoms/cm3 to 1.6×1018 atoms/cm3 using a CZ method; slicing the silicon single crystal; forming an epitaxial layer on the sliced silicon single crystal; and performing a heat treatment thereon as a post-annealing process at a temperature in the range of 600° C. to 850° C.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 10, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Kazunari KURITA, Shuichi OMOTE
  • Publication number: 20090224367
    Abstract: A silicon substrate is manufactured from a single crystal silicon that is doped with phosphorus (P) and is grown by a CZ method to have a predetermined carbon concentration and a predetermined initial oxygen concentration. An n+ epitaxial layer or an n+ implantation layer that is doped with phosphorus (P) at a predetermined concentration or more is formed on the silicon substrate. An n epitaxial layer that is doped with phosphorus (P) at a predetermined concentration is formed on the n+ layer.
    Type: Application
    Filed: March 3, 2009
    Publication date: September 10, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Kazunari KURITA, Shuichi OMOTE
  • Publication number: 20090226737
    Abstract: A condition of a single crystal manufacturing step subjected to the Czochralski method applying an initial oxygen concentration, a dopant concentration or resistivity, and a heat treatment condition is determined simply and clearly on the basis of the conditions of a wafer manufacturing step and a device step so as to obtain a silicon wafer having a desired gettering capability. A manufacturing method of a silicon substrate which is manufactured from a silicon single crystal grown by the CZ method and provided for manufacturing a solid-state imaging device is provided. The internal state of the silicon substrate, which depends on the initial oxygen concentration, the carbon concentration, the resistivity, and the pulling condition of the silicon substrate, is determined by comparing a white spot condition representing upper and lower limits of the density of white spots as device characteristics with the measured density of white spots.
    Type: Application
    Filed: March 4, 2009
    Publication date: September 10, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Kazunari KURITA, Shuichi OMOTE
  • Publication number: 20090218661
    Abstract: A silicon substrate is manufactured from single-crystal silicon which is grown to have a carbon concentration equal to or higher than 1.0×1016 atoms/cm3 and equal to or lower than 1.6×1017 atoms/cm3 and an initial oxygen concentration equal to or higher than 1.4×1018 atoms/cm3 and equal to or lower than 1.6×1018 atoms/cm3 by a CZ method. A device is formed on a front, the thickness of the silicon substrate is equal to or more than 5 ?m and equal to or less than 40 ?m, and extrinsic gettering which produces residual stress equal to or more than 5 Mpa and equal to or less than 200 Mpa is applied to a back face of the substrate.
    Type: Application
    Filed: February 24, 2009
    Publication date: September 3, 2009
    Applicant: SUMCO CORPORATION
    Inventors: Kazunari Kurita, Shuichi Omote
  • Patent number: 7560163
    Abstract: A silicon wafer that has a carbon concentration of 5×1015 to 5×1017 atoms/cm3, interstitial oxygen concentration of 6.5×1017 to 13.5×1017 atoms/cm3, and a resistivity of 100 ?cm or more.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: July 14, 2009
    Assignee: Sumco Corporation
    Inventor: Kazunari Kurita
  • Publication number: 20090117719
    Abstract: A high frequency diode comprising: a P type region, a N type region, and an I layer as a high resistivity layer interposed between the P type region and the N type region, wherein the I layer is made of a silicon wafer that has a carbon concentration of 5×1015 to 5×1017 atoms/cm3 interstitial oxygen concentration of 6.5×1017 to 13.5×1017 atoms/cm3, and a resistivity of 100 ?cm or more.
    Type: Application
    Filed: December 3, 2008
    Publication date: May 7, 2009
    Applicant: Sumco Corporation
    Inventor: Kazunari Kurita
  • Patent number: 7507640
    Abstract: A method for producing a silicon wafer, comprising performing an activation of metallic impurities by irradiating laser light on the metallic impurities constituting contaminants in the silicon wafer, changing the electric charge of the contaminants, and activating the contaminants to a state such that the contaminants easily react with oxygen precipitation nuclei and are subjected to gettering.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: March 24, 2009
    Assignee: Sumco Corporation
    Inventor: Kazunari Kurita
  • Publication number: 20090000537
    Abstract: A method for producing a silicon wafer that has a carbon concentration of 5×1015 to 5×1017 atoms/cm3, interstitial oxygen concentration of 6.5×1017 to 13.5×1017 atoms/cm3, and a resistivity of 100 ?cm or more.
    Type: Application
    Filed: August 29, 2008
    Publication date: January 1, 2009
    Applicant: Sumco Corporation
    Inventor: Kazunari Kurita
  • Publication number: 20080006823
    Abstract: A high frequency diode comprising: a P type region, a N type region, and an I layer as a high resistivity layer interposed between the P type region and the N type region, wherein the I layer is made of a silicon wafer that has a carbon concentration of 5×1015 to 5×1017 atoms/cm3, interstitial oxygen concentration of 6.5×1017 to 13.5×1017 atoms/cm3, and a resistivity of 100 ?cm or more.
    Type: Application
    Filed: January 30, 2007
    Publication date: January 10, 2008
    Inventor: Kazunari Kurita
  • Publication number: 20070207595
    Abstract: A method for producing a silicon wafer, comprising performing an activation of metallic impurities by irradiating laser light on the metallic impurities constituting contaminants in the silicon wafer, changing the electric charge of the contaminants, and activating the contaminants to a state such that the contaminants easily react with oxygen precipitation nuclei and are subjected to gettering.
    Type: Application
    Filed: February 14, 2007
    Publication date: September 6, 2007
    Inventor: Kazunari Kurita
  • Patent number: 7244306
    Abstract: A single crystal ingot is cut to an axial direction so as to including the central axis, a sample for measurement including regions [V], [Pv], [Pi] and [I] is prepared, and a first sample and second sample are prepared by dividing the sample into two so as to be symmetrical against the central axis. A first transition metal is metal-stained on the surface of the first sample and a second transition metal different from the first transition metal is metal-stained on the surface of the second sample. The first and second samples stained with the metals are thermally treated and the first and second transition metals are diffused into the inside of the samples. Recombination lifetimes in the whole of the first and second samples are respectively measured, and the vertical measurement of the first sample is overlapped on the vertical measurement of the second sample.
    Type: Grant
    Filed: October 17, 2003
    Date of Patent: July 17, 2007
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Kazunari Kurita, Jun Furukawa
  • Publication number: 20070066033
    Abstract: By using oxygen-containing silicon wafers obtained by the CZ method and by combining the first heat treatment comprising controlled heat-up operation (ramping) with the second heat treatment comprising high-temperature heat treatment and medium temperature heat treatment in accordance with the process for producing high-resistance silicon wafers according to the present invention, it is possible to obtain high-resistance silicon wafers capable of maintaining their high resistance even after heat treatment in the process of device manufacture while efficiently inhibiting the formation of oxygen donors and preventing changes in resistivity. Further, excellent epitaxial wafers and SOI wafers can be produced using those high-resistance silicon wafers and, therefore, they can be applied in a wide field including high-frequency communication devices and analog/digital hybrid devices, among others.
    Type: Application
    Filed: August 2, 2004
    Publication date: March 22, 2007
    Inventors: Kazunari Kurita, Shinsuke Sadamitsu, Hiroyuki Takao, Masataka Hourai
  • Patent number: 7074271
    Abstract: A surface of a reference sample is contaminated with a transition metal, and a heat treatment is performed to diffuse the transition metal in the sample. A concentration of recombination centers formed by the transition metal is measured in the entire heat-treated reference sample, and a region [V], a region [Pv], a region [Pi], and a region [I] in the reference sample are defined based on the values measured. Meanwhile, recombination lifetimes associated with the transition metal are measured in the entire heat-treated reference sample. Based on both of the measurement results, a correlation line of the concentration of recombination centers and the recombination lifetimes is produced. A surface of the measurement sample is contaminated with the transition metal, and a heat treatment is performed to diffuse the transition metal in the sample.
    Type: Grant
    Filed: February 23, 2004
    Date of Patent: July 11, 2006
    Assignee: Sumitomo Mitsubishi Silicon Corporation
    Inventors: Jun Furukawa, Kazunari Kurita, Kazuhiro Harada
  • Publication number: 20060130738
    Abstract: A single crystal ingot is cut to an axial direction so as to including the central axis, a sample for measurement including regions [V], [Pv], [Pi] and [I] is prepared, and a first sample and second sample are prepared by dividing the sample into two so as to be symmetrical against the central axis. A first transition metal is metal-stained on the surface of the first sample and a second transition metal different from the first transition metal is metal-stained on the surface of the second sample. The first and second samples stained with the metals are thermally treated and the first and second transition metals are diffused into the inside of the samples. Recombination lifetimes in the whole of the first and second samples are respectively measured, and the vertical measurement of the first sample is overlapped on the vertical measurement of the second sample.
    Type: Application
    Filed: October 17, 2003
    Publication date: June 22, 2006
    Inventors: Kazunari Kurita, Jun Furukawa
  • Publication number: 20050183660
    Abstract: A surface of a reference sample is contaminated with a transition metal, and a heat treatment is performed to diffuse the transition metal in the sample. A concentration of recombination centers formed by the transition metal is measured in the entire heat-treated reference sample, and a region [V], a region [Pv], a region [Pi], and a region [I] in the reference sample are defined based on the values measured. Meanwhile, recombination lifetimes associated with the transition metal are measured in the entire heat-treated reference sample. Based on both of the measurement results, a correlation line of the concentration of recombination centers and the recombination lifetimes is produced. A surface of the measurement sample is contaminated with the transition metal, and a heat treatment is performed to diffuse the transition metal in the sample.
    Type: Application
    Filed: February 23, 2004
    Publication date: August 25, 2005
    Inventors: Jun Furukawa, Kazunari Kurita, Kazuhiro Harada