Patents by Inventor Kazunori Nishimura
Kazunori Nishimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240413690Abstract: Provided are a magnetic wedge in which insertion of a magnetic wedge in a tooth tip of a dynamo-electric machine can be performed more smoothly, and a method for manufacturing the magnetic wedge. This magnetic wedge is installed in a slot opening of a stator of the dynamo-electric machine, and defining that the dimension of the magnetic wedge in the circumferential direction of the dynamo-electric machine is the width, the projection shape of the magnetic wedge projected on a plane perpendicular to the width direction is a rectangle, parallelogram, or a right angle trapezoid, and the corners of the rectangle, parallelogram, or right angle trapezoid have a rounded shape.Type: ApplicationFiled: October 6, 2022Publication date: December 12, 2024Applicant: Proterial, Ltd.Inventors: Shin NOGUCHI, Kazunori NISHIMURA, Keiko KIKUCHI
-
Patent number: 11833480Abstract: A device includes a container for storing slurry, a main pipeline with one end connected to the container and the other end extending to an inner space of the container and forming a first circulation path, a nozzle attached to the other end of the main pipeline, a pump provided in the first circulation path between one end and the other end of the main pipeline for sucking and pressurizing slurry, a sub-pipeline which branches from the pump or branches from the main pipeline between the pump and the nozzle and extends to the inner space of the container and forms a second circulation path, a valve for switching distribution of slurry to one or both of the first and second circulation paths, and a discharge port provided at a tip opposite to a branch end of the sub-pipeline and located below the nozzle in a vertical direction.Type: GrantFiled: March 8, 2019Date of Patent: December 5, 2023Assignee: PROTERIAL, LTD.Inventors: Akihiro Maeta, Kazunori Nishimura
-
Patent number: 11636970Abstract: The invention provides a powder magnetic core and a method for manufacturing a powder magnetic core through simple compression molding and capable of manufacturing a complicatedly shaped powder magnetic core with reliable high strength and insulating properties. A method for manufacturing a powder magnetic core with a metallic soft magnetic material powder includes: a first step including mixing a soft magnetic material powder and a binder; a second step including compression molding the mixture obtained after the first step; a third step including performing at least one of grinding and cutting on the compact obtained after the second step; and a fourth step including heat-treating the compact after the third step, wherein in the fourth step, the compact is heat-treated so that an oxide layer containing an element constituting the soft magnetic material powder is formed on the surface of the soft magnetic material powder.Type: GrantFiled: June 4, 2019Date of Patent: April 25, 2023Assignee: PROTERIAL, LTD.Inventors: Kazunori Nishimura, Shin Noguchi, Toshio Mihara
-
Patent number: 11508512Abstract: The invention provides a method for manufacturing a powder magnetic core through simple compression molding and capable of manufacturing a complicatedly shaped powder magnetic core with reliable high strength and insulating properties. The invention is directed to a method for manufacturing a powder magnetic core with a metallic soft magnetic material powder, the method including: a first step including mixing a soft magnetic material powder and a binder; a second step including compression molding the mixture obtained after the first step; a third step including performing at least one of grinding and cutting on the compact obtained after the second step; and a fourth step including heat-treating the compact after the third step, wherein in the fourth step, the compact is heat-treated so that an oxide layer containing an element constituting the soft magnetic material powder is formed on the surface of the soft magnetic material powder.Type: GrantFiled: June 4, 2019Date of Patent: November 22, 2022Assignee: HITACHI METALS, LTD.Inventors: Kazunori Nishimura, Shin Noguchi, Toshio Mihara
-
Publication number: 20220294279Abstract: A magnetic wedge has high electrical resistance and bending strength, a rotary electric machine employs the magnetic wedge, and a method is for manufacturing the magnetic wedge. The magnetic wedge includes Fe-based soft magnetic particles, which contain an element M that is more readily oxidized than Fe and are bound by an oxide phase including the element M.Type: ApplicationFiled: August 6, 2020Publication date: September 15, 2022Applicant: HITACHI METALS, LTD.Inventors: Shin NOGUCHI, Keiko KIKUCHI, Mamoru KIMURA, Kazunori NISHIMURA
-
Patent number: 11192183Abstract: A powder magnetic core manufacturing method includes: a first step of mixing a binder with a soft magnetic material powder containing Fe-M (M: Al or Cr)-based alloy particles on which an insulating layer is formed; a second step of filling a pressing die with a mixture obtained through the first step, subjecting the mixture to pressing to obtain a green compact, and slidingly demolding the green compact from the pressing die; a third step of processing the green compact after the second step and removing expansion deformed matter of the alloy particles present in a region of pressing flaws formed on a surface of the green compact during the slidingly demolding; and a fourth step of subjecting the green compact after the third step to heat treatment to oxidize surfaces of the Fe-M (M: Al or Cr)-based alloy particles at high temperature, so that the oxide phase is formed.Type: GrantFiled: September 16, 2016Date of Patent: December 7, 2021Assignee: HITACHI METALS, LTD.Inventors: Tetsuroh Katoh, Kazunori Nishimura, Shin Noguchi
-
Patent number: 11097347Abstract: A method of producing an atomized powder includes: an atomizing step of forming magnetic alloy particles from a molten metal by an atomizing method, to obtain a slurry in which the magnetic alloy particles are dispersed in an aqueous dispersion medium; a slurry concentration step of causing magnetic separation means to separate the magnetic alloy particles from the slurry to form a concentrated slurry having the magnetic alloy particles of more than 80% by mass, the magnetic separation means using a rotary drum including a magnetic circuit part fixedly disposed at a position where at least a part of the magnetic circuit part is immersed in the slurry and an outer sleeve capable of rotating outside the magnetic circuit part; and a drying step of causing drying means using an air flow dryer to dry the concentrated slurry to form a magnetic alloy powder.Type: GrantFiled: March 23, 2018Date of Patent: August 24, 2021Assignee: HITACHI METALS, LTD.Inventors: Kazunori Nishimura, Shin Noguchi, Nobuaki Yoshioka
-
Patent number: 11011305Abstract: A method for manufacturing a powder magnetic core using a soft magnetic material powder, wherein the method has: a first step of mixing the soft magnetic material powder with a binder, a second step of subjecting a mixture obtained through the first step to pressure forming, and a third step of subjecting a formed body obtained through the second step to heat treatment. The soft magnetic material powder is an Fe—Cr—Al based alloy powder comprising Fe, Cr and Al. An oxide layer is formed on a surface of the soft magnetic material powder by the heat treatment. The oxide layer has a higher ratio by mass of Al to the sum of Fe, Cr and Al than an alloy phase inside the powder.Type: GrantFiled: May 24, 2018Date of Patent: May 18, 2021Assignee: HITACHI METALS, LTD.Inventors: Yoshimasa Nishio, Shin Noguchi, Kazunori Nishimura, Tetsuroh Katoh, Toshio Mihara
-
Publication number: 20210039058Abstract: A device includes a container for storing slurry, a main pipeline with one end connected to the container and the other end extending to an inner space of the container and forming a first circulation path, a nozzle attached to the other end of the main pipeline, a pump provided in the first circulation path between one end and the other end of the main pipeline for sucking and pressurizing slurry, a sub-pipeline which branches from the pump or branches from the main pipeline between the pump and the nozzle and extends to the inner space of the container and forms a second circulation path, a valve for switching distribution of slurry to one or both of the first and second circulation paths, and a discharge port provided at a tip opposite to a branch end of the sub-pipeline and located below the nozzle in a vertical direction.Type: ApplicationFiled: March 8, 2019Publication date: February 11, 2021Applicant: HITACHI METALS, LTD.Inventors: Akihiro MAETA, Kazunori NISHIMURA
-
Publication number: 20210001289Abstract: An object is to provide a slurry storage and stirring device which can sufficiently flow even a high-concentration slurry by a simple means and is excellent in stirring properties. Disclosed is a slurry storage and stirring device including a container which stores a slurry containing particles and a solvent, and in this device, the container has an inner wall provided inside the container and formed of a porous body which passes a gas supplied to the container through the porous body to generate fine bubbles in the slurry.Type: ApplicationFiled: March 5, 2019Publication date: January 7, 2021Applicant: HITACHI METALS, LTD.Inventors: Akihiro MAETA, Kazunori NISHIMURA
-
Patent number: 10766118Abstract: An edge processing device includes: conveying means that convey a molded powder compact, a first rotating tool disposed on one side and a second rotating tool disposed on the other side and rotating in a direction identical to a direction the first rotating tool rotates. The first rotating tool contacts from an upstream side with a first corner portion between one side surface of a processing target portion of the molded powder compact and a rear surface of the processing target portion. The second rotating tool contacts from a downstream side with a second corner portion between the other side surface of the processing target portion and a front surface of the processing target portion. The second rotating tool faces the first rotating tool with the conveying path therebetween, and is positionally displaced to the downstream side with respect to the first rotating tool.Type: GrantFiled: September 28, 2016Date of Patent: September 8, 2020Assignee: HITACHI METALS, LTD.Inventors: Shinichi Nakata, Kazunori Nishimura, Katsumasa Yamasaki
-
Publication number: 20200222986Abstract: A powder magnetic core manufacturing method includes: a first step of mixing a binder with a soft magnetic material powder containing Fe-M (M: Al or Cr)-based alloy particles on which an insulating layer is formed; a second step of filling a pressing die with a mixture obtained through the first step, subjecting the mixture to pressing to obtain a green compact, and slidingly demolding the green compact from the pressing die; a third step of processing the green compact after the second step and removing expansion deformed matter of the alloy particles present in a region of pressing flaws formed on a surface of the green compact during the slidingly demolding; and a fourth step of subjecting the green compact after the third step to heat treatment to oxidize surfaces of the Fe-M (M: Al or Cr)-based alloy particles at high temperature, so that the oxide phase is formed.Type: ApplicationFiled: September 16, 2016Publication date: July 16, 2020Applicant: HITACHI METALS, LTD.Inventors: Tetsuroh KATOH, Kazunori NISHIMURA, Shin NOGUCHI
-
Patent number: 10586646Abstract: A magnetic core has a high initial permeability and a small core loss, reducing a core loss at high frequencies; and a coil component including the same. This magnetic core is formed by binding a plurality of Fe-based alloy particles containing Al via an oxide layer containing an Fe oxide. In an X-ray diffraction spectrum of the magnetic core measured using Cu-K? characteristic X-rays, a peak intensity ratio (P1/P2) of peak intensity P1 of a diffraction peak derived from the Fe oxide having a corundum structure appearing in the vicinity of 2?=33.2° to peak intensity P2 of a diffraction peak derived from the Fe-based alloy having a bcc structure appearing in the vicinity of 2?=44.7° is 0.010 or less (excluding 0). A superlattice peak intensity of an Fe3Al ordered structure is at most a noise level within a range of 2?=20° to 40°.Type: GrantFiled: September 15, 2017Date of Patent: March 10, 2020Assignee: HITACHI METALS, LTD.Inventors: Toshio Mihara, Tetsuroh Katoh, Kazunori Nishimura, Shin Noguchi
-
Patent number: 10573441Abstract: There is provided a magnetic core having both high strength and high resistivity, a coil component produced with such a magnetic core, and a magnetic core manufacturing method capable of easily manufacturing a magnetic core with high strength and high resistivity. A method for manufacturing a magnetic core having a structure including dispersed Fe-based soft magnetic alloy particles includes: a first step including mixing a first Fe-based soft magnetic alloy powder containing Al and Cr, a second Fe-based soft magnetic alloy powder containing Cr and Si, and a binder; a second step including pressing the mixture obtained after the first step; and a third step including heat-treating the compact obtained after the second step, wherein the heat treatment forms an oxide layer on the surface of Fe-based soft magnetic alloy particles and bonds the Fe-based soft magnetic alloy particles together through the oxide layer.Type: GrantFiled: July 16, 2015Date of Patent: February 25, 2020Assignee: HITACHI METALS, LTD.Inventors: Shin Noguchi, Kazunori Nishimura, Toshio Mihara
-
Publication number: 20200047255Abstract: A method of producing an atomized powder includes: an atomizing step of forming magnetic alloy particles from a molten metal by an atomizing method, to obtain a slurry in which the magnetic alloy particles are dispersed in an aqueous dispersion medium; a slurry concentration step of causing magnetic separation means to separate the magnetic alloy particles from the slurry to form a concentrated slurry having the magnetic alloy particles of more than 80% by mass, the magnetic separation means using a rotary drum including a magnetic circuit part fixedly disposed at a position where at least a part of the magnetic circuit part is immersed in the slurry and an outer sleeve capable of rotating outside the magnetic circuit part; and a drying step of causing drying means using an air flow dryer to dry the concentrated slurry to form a magnetic alloy powder.Type: ApplicationFiled: March 23, 2018Publication date: February 13, 2020Applicant: HITACHI METALS, LTD.Inventors: Kazunori NISHIMURA, Shin NOGUCHI, Nobuaki YOSHIOKA
-
Publication number: 20190355503Abstract: The invention provides a powder magnetic core and a method for manufacturing a powder magnetic core through simple compression molding and capable of manufacturing a complicatedly shaped powder magnetic core with reliable high strength and insulating properties. A method for manufacturing a powder magnetic core with a metallic soft magnetic material powder includes: a first step including mixing a soft magnetic material powder and a binder; a second step including compression molding the mixture obtained after the first step; a third step including performing at least one of grinding and cutting on the compact obtained after the second step; and a fourth step including heat-treating the compact after the third step, wherein in the fourth step, the compact is heat-treated so that an oxide layer containing an element constituting the soft magnetic material powder is formed on the surface of the soft magnetic material powder.Type: ApplicationFiled: June 4, 2019Publication date: November 21, 2019Applicant: HITACHI METALS, LTD.Inventors: Kazunori NISHIMURA, Shin Noguchi, Toshio Mihara
-
Publication number: 20190355504Abstract: The invention provides a method for manufacturing a powder magnetic core through simple compression molding and capable of manufacturing a complicatedly shaped powder magnetic core with reliable high strength and insulating properties. The invention is directed to a method for manufacturing a powder magnetic core with a metallic soft magnetic material powder, the method including: a first step including mixing a soft magnetic material powder and a binder; a second step including compression molding the mixture obtained after the first step; a third step including performing at least one of grinding and cutting on the compact obtained after the second step; and a fourth step including heat-treating the compact after the third step, wherein in the fourth step, the compact is heat-treated so that an oxide layer containing an element constituting the soft magnetic material powder is formed on the surface of the soft magnetic material powder.Type: ApplicationFiled: June 4, 2019Publication date: November 21, 2019Applicant: HITACHI METALS, LTD.Inventors: Kazunori NISHIMURA, Shin NOGUCHI, Toshio MIHARA
-
Patent number: 10468174Abstract: Provided are a magnetic core having a high initial permeability and a coil component including the same. The magnetic core has an X-ray diffraction spectrum of the magnetic core measured using Cu-K? characteristic X-rays, wherein a peak intensity ratio (P1/P2) of a peak intensity P1 of a diffraction peak of an Fe oxide having a corundum structure appearing in a vicinity of 2?=33.2° to a peak intensity P2 of a diffraction peak of the Fe-based alloy having a bcc structure appearing in a vicinity of 2?=44.7° is 0.015 or less; and in the X-ray diffraction spectrum, a peak intensity ratio (P3/P2) of a peak intensity P3 of a superlattice peak of an Fe3Al ordered structure appearing in a vicinity of 2?=26.6° to the peak intensity P2 is 0.015 or more and 0.050 or less.Type: GrantFiled: September 15, 2017Date of Patent: November 5, 2019Assignee: HITACHI METALS, LTD.Inventors: Toshio Mihara, Tetsuroh Katoh, Kazunori Nishimura, Shin Noguchi
-
Patent number: 10453599Abstract: There is provided a magnetic core having high manufacturability and high magnetic permeability, to provide a method for manufacturing such a magnetic core, and to provide a coil component having such a magnetic core. The invention is directed to a magnetic core including: Fe-based soft magnetic alloy particles; and an oxide phase existing between the Fe-based soft magnetic alloy particles, wherein the Fe-based soft magnetic alloy particles include Fe—Al—Cr alloy particles and Fe—Si—Al alloy particles.Type: GrantFiled: July 16, 2015Date of Patent: October 22, 2019Assignee: HITACHI METALS, LTD.Inventors: Shin Noguchi, Kazunori Nishimura, Toshio Mihara
-
Patent number: 10418160Abstract: Provided are: a metal powder core having a configuration suitable for core loss reduction and strength improvement; a coil component employing this; and a fabrication method for metal powder core. The metal powder core is obtained by dispersing Cu powder among soft magnetic material powder comprising pulverized powder of Fe-based soft magnetic alloy and atomized powder of Fe-based soft magnetic alloy and then by performing compaction. The fabrication method for metal powder core includes: a mixing step of mixing together soft magnetic material powder containing thin-leaf shaped pulverized powder of Fe-based soft magnetic alloy and atomized powder of Fe-based soft magnetic alloy, Cu powder, and a binder and thereby obtaining a mixture; a forming step of performing pressure forming on the mixture obtained at the mixing step; and a heat treatment step of annealing a formed article obtained at the forming step.Type: GrantFiled: November 28, 2018Date of Patent: September 17, 2019Assignee: Hitachi Metals, Ltd.Inventors: Tetsuro Kato, Shin Noguchi, Kazunori Nishimura