Patents by Inventor Kazunori Ohta

Kazunori Ohta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9964560
    Abstract: To provide a high-reliable transfer mold type sensor device in which a combined sensor including a plurality of sensors having a function of detecting physical amounts, a substrate processing a signal from the combined sensor and controlling a signal input/output with an external device, a chip pad mounted with the combined sensor and the substrate, and a lead frame are sealed with a mold resin and a package is formed, the combined sensor is configured to be thicker than the substrate and the chip pad, a principal surface side of the combined sensor is covered with the mold resin and a back surface side thereof contacts the substrate by a joint material, and the combined sensor is arranged on a package neutral surface in a cross-section of a thickness direction of the package including the combined sensor, the substrate, and the chip pad.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: May 8, 2018
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Akihiro Yaguchi, Masahide Hayashi, Kazunori Ohta, Akihiro Okamoto
  • Patent number: 9874180
    Abstract: A powering apparatus has a diesel engine, a low pressure hydraulic tube containing lower pressure hydraulic fluid, a high pressure hydraulic tube containing higher pressure hydraulic fluid, a first hydraulic pump driven by the diesel engine to send hydraulic fluid from the low pressure hydraulic tube to the high pressure hydraulic tube to adjust the pressure difference within a certain range, an exhaust gas recirculating apparatus including a first hydraulic motor driven by the pressure difference and a compressor driven by the first hydraulic motor to compress a portion of exhaust gas and to supply the exhaust gas to an intake air tube, and an exhaust heat collecting apparatus including a turbine rotated by a refrigerant heated by the exhaust gas and a second hydraulic pump driven by the turbine to send hydraulic fluid from the low pressure hydraulic tube to the high pressure hydraulic tube.
    Type: Grant
    Filed: December 18, 2015
    Date of Patent: January 23, 2018
    Assignee: MITSUI ENGINEERING & SHIPBUILDING CO., LTD.
    Inventors: Nobuyuki Sakairi, Kazunori Ohta, Kousuke Matsumaru, Toshinori Shirai
  • Publication number: 20160177886
    Abstract: A powering apparatus has a diesel engine, a low pressure hydraulic tube containing lower pressure hydraulic fluid, a high pressure hydraulic tube containing higher pressure hydraulic fluid, a first hydraulic pump driven by the diesel engine to send hydraulic fluid from the low pressure hydraulic tube to the high pressure hydraulic tube to adjust the pressure difference within a certain range, an exhaust gas recirculating apparatus including a first hydraulic motor driven by the pressure difference and a compressor driven by the first hydraulic motor to compress a portion of exhaust gas and to supply the exhaust gas to an intake air tube, and an exhaust heat collecting apparatus including a turbine rotated by a refrigerant heated by the exhaust gas and a second hydraulic pump driven by the turbine to send hydraulic fluid from the low pressure hydraulic tube to the high pressure hydraulic tube.
    Type: Application
    Filed: December 18, 2015
    Publication date: June 23, 2016
    Inventors: Nobuyuki SAKAIRI, Kazunori OHTA, Kousuke MATSUMARU, Toshinori SHIRAI
  • Publication number: 20160131678
    Abstract: To provide a high-reliable transfer mold type sensor device in which a combined sensor including a plurality of sensors having a function of detecting physical amounts, a substrate processing a signal from the combined sensor and controlling a signal input/output with an external device, a chip pad mounted with the combined sensor and the substrate, and a lead frame are sealed with a mold resin and a package is formed, the combined sensor is configured to be thicker than the substrate and the chip pad, a principal surface side of the combined sensor is covered with the mold resin and a back surface side thereof contacts the substrate by a joint material, and the combined sensor is arranged on a package neutral surface in a cross-section of a thickness direction of the package including the combined sensor, the substrate, and the chip pad.
    Type: Application
    Filed: February 5, 2014
    Publication date: May 12, 2016
    Inventors: Akihiro YAGUCHI, Masahide HAYASHI, Kazunori OHTA, Akihiro OKAMOTO
  • Patent number: 8952611
    Abstract: The present invention aims to prevent breakage of a sealing part and an electrode of a high pressure discharge lamp, and provides an electrode 100 used for a discharge lamp and having a rod-shaped part 101, one end of the rod-shaped part 101 to be sealed by a sealing part of an arc tube of the discharge lamp, the other end of the rod-shaped part 101 to be in a discharge space in the arc tube, wherein the rod-shaped part 101 has a rough surface that is composed of a plurality of types of crystal grains each having a different surface condition due to differences in crystal orientation.
    Type: Grant
    Filed: March 4, 2011
    Date of Patent: February 10, 2015
    Assignee: Panasonic Corporation
    Inventors: Jun Sakaguchi, Yoshiki Kitahara, Katsuhiro Ono, Kazunori Ohta
  • Publication number: 20140191342
    Abstract: There is provided a MEMS sensor including a signal processing LSI equipped with a temperature sensor for measuring temperature of a sensor, and a MEMS sensor chip overlaid on the signal processing LSI, the MEMS sensor chip being mounted on a heat generating part of the signal processing LSI. This MEMS sensor decreases the effects caused by thermally triggered changes in temperature characteristics.
    Type: Application
    Filed: August 10, 2012
    Publication date: July 10, 2014
    Inventors: Ichiro Ohsaka, Kazunori Ohta
  • Publication number: 20140117836
    Abstract: A high-pressure discharge lamp having an electrode including an electrode rod, a melted part and a coil part, and satisfying 0 < La L < 0.3 , where La denotes an average value of a length in units of mm of an exposed portion of the coil part in an axial direction of the electrode rod, the exposed portion being not covered with the melted part, and L denotes a maximum value of a length in units of mm between a tip of a head of the electrode rod and an opposite edge of the coil part to the melted part, measured in the axial direction.
    Type: Application
    Filed: March 22, 2013
    Publication date: May 1, 2014
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroki OGAWA, Yoshiki KITAHARA, Kazunori OHTA, Tamotsu ISHIKAWA, Jun SAKAGUCHI
  • Patent number: 8704436
    Abstract: A high-pressure discharge lamp having an electrode including an electrode rod, a melted part and a coil part, and satisfying 0 < La L < 0.3 , where La denotes an average value of a length in units of mm of an exposed portion of the coil part in an axial direction of the electrode rod, the exposed portion being not covered with the melted part, and L denotes a maximum value of a length in units of mm between a tip of a head of the electrode rod and an opposite edge of the coil part to the melted part, measured in the axial direction.
    Type: Grant
    Filed: March 22, 2013
    Date of Patent: April 22, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroki Ogawa, Yoshiki Kitahara, Kazunori Ohta, Tamotsu Ishikawa, Jun Sakaguchi
  • Patent number: 8659101
    Abstract: Provided is an inertial sensor device comprising a detection part having an MEMS structure, wherein convenience during sensor installation is ensured while erroneous operation caused by the application of external vibration is controlled. To achieve this objective, an anti-vibration structure (103) is provided in the inertial sensor device, between a semiconductor chip (102) mounted on a package substrate and a semiconductor chip (104) comprising a sensor detection part. The anti-vibration structure (103) has a structure in which the periphery of an anti-vibration part (103a) is surrounded by an anti-vibration part (103b) comprising a material having a larger Young's modulus.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: February 25, 2014
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Kengo Suzuki, Kazunori Ohta, Heewon Jeong, Masahide Hayashi
  • Publication number: 20130241013
    Abstract: Provided is an inertial sensor device comprising a detection part having an MEMS structure, wherein convenience during sensor installation is ensured while erroneous operation caused by the application of external vibration is controlled. To achieve this objective, an anti-vibration structure (103) is provided in the inertial sensor device, between a semiconductor chip (102) mounted on a package substrate and a semiconductor chip (104) comprising a sensor detection part. The anti-vibration structure (103) has a structure in which the periphery of an anti-vibration part (103a) is surrounded by an anti-vibration part (103b) comprising a material having a larger Young's modulus.
    Type: Application
    Filed: October 7, 2011
    Publication date: September 19, 2013
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Kiyoko Yamanaka, Kengo Suzuki, Kazunori Ohta, Heewon Jeong, Masahide Hayashi
  • Patent number: 8459108
    Abstract: An angular rate sensor includes a metallic core board having a core meal layer made of a metal plate and a wiring layer including a wiring structure, a semiconductor device for detecting an angular rate fixed on the core metal layer, and a cap fixed to the wiring layer. The semiconductor device for detecting an angular rate is disposed in a hollow chamber formed by the cap and the metallic core board. The metallic core board, the semiconductor device, and the cap are molded with resin. Consequently, the angular rate sensor has a packaging structure in which electromagnetic noise resistance and moisture resistance are improved while stress applied to the semiconductor device for detecting an angular rate is reduced.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: June 11, 2013
    Assignee: Hitachi Automotive Systems, Ltd.
    Inventors: Kazunori Ohta, Masahide Hayashi
  • Patent number: 8247974
    Abstract: The present invention aims to provide a small-sized high-efficiency high pressure discharge lamp that exhibits favorable light intensity distribution properties and is less likely to cause breakage of an arc tube. The present invention is a high pressure discharge lamp 101 comprising: an arc tube 110 that includes; a light-emitting part 111 having a substantially spherical shape and having mercury enclosed therein; and a pair of sealing parts 112 extending from opposite sides of the light-emitting part 111; and a pair of electrodes 130 that are arranged in the arc tube 110 such that an end of each electrode is sealed by a respective sealing part and the other ends of the electrodes oppose each other in the light-emitting part. The enclosed mercury has a density of 0.2 to 0.4 [mg/mm3] inclusive. A distance W from a contact point S to a center O is 3.0 to 5.0 [mm] inclusive. A distance CO from a contact point TO to the center O is 1.5 to 3.0 [mm] inclusive.
    Type: Grant
    Filed: June 2, 2010
    Date of Patent: August 21, 2012
    Assignee: Panasonic Corporation
    Inventors: Kazunori Ohta, Kouhei Gamada, Masayuki Suizu, Shuji Tamaru
  • Publication number: 20120033190
    Abstract: The present invention aims to prevent breakage of a sealing part and an electrode of a high pressure discharge lamp, and provides an electrode 100 used for a discharge lamp and having a rod-shaped part 101, one end of the rod-shaped part 101 to be sealed by a sealing part of an arc tube of the discharge lamp, the other end of the rod-shaped part 101 to be in a discharge space in the arc tube, wherein the rod-shaped part 101 has a rough surface that is composed of a plurality of types of crystal grains each having a different surface condition due to differences in crystal orientation.
    Type: Application
    Filed: March 4, 2011
    Publication date: February 9, 2012
    Inventors: Jun Sakaguchi, Yoshiki Kitahara, Katsuhiro Ono, Kazunori Ohta
  • Publication number: 20110219873
    Abstract: An angular rate sensor includes a metallic core board having a core meal layer made of a metal plate and a wiring layer including a wiring structure, a semiconductor device for detecting an angular rate fixed on the core metal layer, and a cap fixed to the wiring layer. The semiconductor device for detecting an angular rate is disposed in a hollow chamber formed by the cap and the metallic core board. The metallic core board, the semiconductor device, and the cap are molded with resin. Consequently, the angular rate sensor has a packaging structure in which electromagnetic noise resistance and moisture resistance are improved while stress applied to the semiconductor device for detecting an angular rate is reduced.
    Type: Application
    Filed: February 17, 2011
    Publication date: September 15, 2011
    Applicant: Hitachi Automotive Systems, Ltd.
    Inventors: Kazunori OHTA, Masahide Hayashi
  • Publication number: 20110193466
    Abstract: The present invention aims to provide a small-sized high-efficiency high pressure discharge lamp that exhibits favorable light intensity distribution properties and is less likely to cause breakage of an arc tube. The present invention is a high pressure discharge lamp 101 comprising: an arc tube 110 that includes; a light-emitting part 111 having a substantially spherical shape and having mercury enclosed therein; and a pair of sealing parts 112 extending from opposite sides of the light-emitting part 111; and a pair of electrodes 130 that are arranged in the arc tube 110 such that an end of each electrode is sealed by a respective sealing part and the other ends of the electrodes oppose each other in the light-emitting part. The enclosed mercury has a density of 0.2 to 0.4 [mg/mm3] inclusive. A distance W from a contact point S to a center O is 3.0 to 5.0 [mm] inclusive. A distance CO from a contact point TO to the center O is 1.5 to 3.0 [mm] inclusive.
    Type: Application
    Filed: June 2, 2010
    Publication date: August 11, 2011
    Inventors: Kazunori Ohta, Kouhei Gamada, Masayuki Suizu, Shuji Tamaru
  • Publication number: 20070159614
    Abstract: A mask distance a is adjusted with magnification control unit and mask-shift servo-control unit, and a base plate distance b is adjusted with focus control unit, AFC control unit and table-shift servo-control unit, so that a/b is kept constant, and 1/f=1/a+1/b is satisfied. Even when a focal distance of projection lens fluctuates from temperature change of projection lens due to laser beams, projection magnification is able to be kept constant and focusing is precisely carried out upon imaging mask on the base. The invention is usable for ELA (excimer laser anneal) apparatus of SLS (Sequential Lateral Solidification) type.
    Type: Application
    Filed: March 7, 2007
    Publication date: July 12, 2007
    Applicant: The Japan Steel Works, LTD
    Inventors: Toshio Inami, Kazunori Ohta, Yasuhide Kurata, Junichi Shida
  • Patent number: 6696789
    Abstract: The present invention provides a high-resolution color picture tube device with a decreased beam spot diameter. The color picture tube device has an electron gun including cathodes, a control electrode, an accelerating electrode, a G3 electrode, a first focusing electrode, a second focusing electrode, and a final accelerating electrode that are arranged in this order. A voltage applied to the G3 electrode is obtained by dividing with a resistor a voltage applied to the final accelerating electrode, and when an electron beam is a non-deflection state, a relationship represented as Va>Vg3>Vfoc2 is satisfied where Va, Vg3, and Vfoc2 denote voltages respectively applied to the final accelerating electrode, the G3 electrode and the second focusing electrode. Thereby, the G3 electrode is applied with a high voltage independently for forming a prefocus lens.
    Type: Grant
    Filed: May 2, 2003
    Date of Patent: February 24, 2004
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiko Sukeno, Kazunori Ohta, Yasuyuki Ueda
  • Publication number: 20030209988
    Abstract: The present invention provides a high-resolution color picture tube device with a decreased beam spot diameter. The color picture tube device has an electron gun including cathodes, a control electrode, an accelerating electrode, a G3 electrode, a first focusing electrode, a second focusing electrode, and a final accelerating electrode that are arranged in this order. A voltage applied to the G3 electrode is obtained by dividing with a resistor a voltage applied to the final accelerating electrode, and when an electron beam is a non-deflection state, a relationship represented as Va>Vg3>Vfoc2 is satisfied where Va, Vg3, and Vfoc2 denote voltages respectively applied to the final accelerating electrode, the G3 electrode and the second focusing electrode. Thereby, the G3 electrode is applied with a high voltage independently for forming a prefocus lens.
    Type: Application
    Filed: May 2, 2003
    Publication date: November 13, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masahiko Sukeno, Kazunori Ohta, Yasuyuki Ueda
  • Patent number: 6605898
    Abstract: A CRT device with an electron gun provided therein includes control means for controlling voltages applied to a cathode and a control electrode constituting the electron gun. The control means exerts control on each electrode voltage so that the difference between the cutoff voltage of the cathode and the voltage of the control electrode is greater when the luminance level of a luminance signal separated from picture signal is higher, thereby minimizing a spot diameter.
    Type: Grant
    Filed: January 15, 2002
    Date of Patent: August 12, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd
    Inventors: Masahide Yamauchi, Kazunori Ohta, Masahiko Sukeno, Takashi Itoh
  • Publication number: 20030006689
    Abstract: A cathode, a control electrode, and an accelerating electrode are formed in this order, and electron beam passing holes for passing an electron beam emitted from the cathode are provided in the control electrode and the accelerating electrode, respectively. A concave portion is formed on a surface of the control electrode on a side of the accelerating electrode, and a convex portion is formed on a surface of the accelerating electrode on a side of the control electrode. This allows an actual gap between the control electrode and the accelerating electrode on a periphery of the electron beam passing holes to be reduced, and thus a voltage to be applied to the accelerating electrode can be reduced. Further, while the voltage of the accelerating electrode is suppressed, the electron beam passing hole of the control electrode can be reduced in diameter, and thus a beam spot formed on a phosphor screen can be reduced in diameter.
    Type: Application
    Filed: July 2, 2002
    Publication date: January 9, 2003
    Applicant: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazunori Ohta, Masahide Yamauchi