Patents by Inventor Kazunori Shinoda

Kazunori Shinoda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968882
    Abstract: A high-molecular-weight compound having at least one substituted triarylamine structural unit represented by the following general formula (1), further including a structural unit having at least one aromatic hydrocarbon ring or a structural unit having a triarylamine skeleton in addition to the at least one substituted triarylamine structural unit, and having a weight average molecular weight of 10,000 or more and 1,000,000 or less in terms of polystyrene and no a crosslinker, wherein the high-molecular-weight compound is used in an organic EL device as a constituent material of at least one organic layer. A polymer material having excellent hole injection/transport performance, electron blocking capability, high heat resistance, and high stability in a thin-film state for use in a polymer organic EL device, and an organic EL device having a low drive voltage, high light emission efficiency, and a long lifetime using this polymer material.
    Type: Grant
    Filed: May 29, 2020
    Date of Patent: April 23, 2024
    Assignee: HODOGAYA CHEMICAL CO., LTD.
    Inventors: Kazunori Togashi, Mika Shinoda, Hideyoshi Kitahara, Shunji Mochizuki, Hiroki Hirai, Yuta Saegusa
  • Patent number: 11915951
    Abstract: A plasma processing apparatus includes a stage disposed in a processing chamber for mounting a wafer, a plasma generation chamber disposed above the processing chamber for plasma generation using process gas, a plate member having multiple introduction holes, made of a dielectric material, disposed above the stage and between the processing chamber and the plasma generation chamber, and a lamp disposed around the plate member for heating the wafer. The plasma processing apparatus further includes an external IR light source, an emission fiber arranged in the stage, that outputs IR light from the external IR light source toward a wafer bottom, and a light collection fiber for collecting IR light from the wafer. Data obtained using only IR light from the lamp is subtracted from data obtained also using IR light from the external IR light source during heating of the wafer. Thus, a wafer temperature is determined.
    Type: Grant
    Filed: June 26, 2020
    Date of Patent: February 27, 2024
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Hiroyuki Kobayashi, Nobuya Miyoshi, Kazunori Shinoda, Tatehito Usui, Naoyuki Kofuji, Yutaka Kouzuma, Tomoyuki Watanabe, Kenetsu Yokogawa, Satoshi Sakai, Masaru Izawa
  • Publication number: 20240047222
    Abstract: Provided is an etching technique providing higher uniformity of etching amount and a higher yield of etching processing. An etching method for etching a film layer as a processing object containing nitride of transition metal, the film layer being disposed on a surface of a wafer, includes a step of supplying reactive particles containing fluorine and hydrogen but containing no oxygen to a surface of the film layer to form a reaction layer on the surface of the film layer, and a step of eliminating the reaction layer by heating the film layer.
    Type: Application
    Filed: April 22, 2021
    Publication date: February 8, 2024
    Inventors: Kazunori Shinoda, Hirotaka Hamamura, Kenji Maeda, Kenetsu Yokogawa, Kenji Ishikawa, Masaru Hori
  • Publication number: 20230118576
    Abstract: This invention provides a wafer processing method comprising a process of irradiating a wafer to be processed placed on the upper surface of a sample table arranged in a processing chamber with light or electromagnetic waves to heat and remove a compound layer of a film layer that is preliminarily formed on the upper surface of the film layer of the upper surface of the wafer, wherein in the process, by receiving the light or electromagnetic waves reflected by the upper surface of the wafer, a signal indicating a temporal change in intensity using the wavelength of the light or electromagnetic waves as a parameter is corrected using information of the intensity of the light or electromagnetic waves detected by receiving the light or electromagnetic waves at a position on the circumferential side of the upper surface of the sample table.
    Type: Application
    Filed: December 20, 2019
    Publication date: April 20, 2023
    Inventors: Hiroyuki Kobayashi, Atsushi Sekiguchi, Tatehito Usui, Soichiro Eto, Shigeru Nakamoto, Kazunori Shinoda, Nobuya Miyoshi
  • Patent number: 11557463
    Abstract: In a vacuum processing apparatus including: a vacuum container including a processing chamber therein; a plasma formation chamber; plate members being arranged between the processing chamber and the plasma formation chamber; and a lamp and a window member being arranged around the plate members, in order that a wafer and the plate members are heated by electromagnetic waves from the lamp, a bottom surface and a side surface of the window member is formed of a member transmitting the electromagnetic waves therethrough.
    Type: Grant
    Filed: January 28, 2021
    Date of Patent: January 17, 2023
    Assignee: Hitachi High-Tech Corporation
    Inventors: Hiroyuki Kobayashi, Nobuya Miyoshi, Kazunori Shinoda, Kenji Maeda, Yutaka Kouzuma, Satoshi Sakai, Masaru Izawa
  • Patent number: 11515167
    Abstract: Provided is a plasma etching method which enables etching with high accuracy while controlling and reducing surface roughness of a transition metal film. The etching is performed for the transition metal film, which is formed on a sample and contains a transition metal element, by a first step of isotropically generating a layer of transition metal oxide on a surface of the transition metal film while a temperature of the sample is maintained at 100° C. or lower, a second step of raising the temperature of the sample to a predetermined temperature of 150° C. or higher and 250° C. or lower while a complexation gas is supplied to the layer of transition metal oxide, a third step of subliming and removing a reactant generated by an reaction between the complexation gas and the transition metal oxide formed in the first step while the temperature of the sample is maintained at 150° C. or higher and 250° C. or lower, and a fourth step of cooling the sample.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: November 29, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Sumiko Fujisaki, Yoshihide Yamaguchi, Hiroyuki Kobayashi, Kazunori Shinoda, Kohei Kawamura, Yutaka Kouzuma, Masaru Izawa
  • Patent number: 11276579
    Abstract: A substrate processing method for reducing a surface roughness of a semiconductor wafer by processing a film structure having at least two types of films beforehand disposed on the substrate, including steps of repeating an adsorption step of supplying activated particles into the processing chamber and allowing the particles to be adsorbed to a surface of a desirable film to be etched in the at least two types of films to allow the particles to combine with a material of the desirable film to form a reaction layer, a removal step of using plasma generated by supplying oxygen into the processing chamber to remove a deposit containing particles adhering to a surface of an undesirable film to be etched in the films, and a desorption step of desorbing and removing the reaction layer on the desirable film to be etched by heating the sample.
    Type: Grant
    Filed: November 14, 2018
    Date of Patent: March 15, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Hiroyuki Kobayashi, Nobuya Miyoshi, Kazunori Shinoda, Yutaka Kouzuma, Masaru Izawa
  • Patent number: 11217454
    Abstract: The present invention provides a plasma processing method or a plasma processing method, which allows the evenness of etching amounts to increase and the yield of processing to improve. A method for etching a tungsten film includes: a first step of depositing a fluorocarbon layer and forming an intermediate layer that contains tungsten and fluorine and is self-limiting between the fluorocarbon layer and the tungsten film by supplying plasma of an organic gas containing fluorine to a base material having the tungsten film over at least a part of the surface; and a second step of removing the fluorocarbon layer and the intermediate layer by using plasma of an oxygen gas.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: January 4, 2022
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Kazunori Shinoda, Hiroto Otake, Hiroyuki Kobayashi, Kohei Kawamura, Masaru Izawa
  • Publication number: 20210366721
    Abstract: A substrate processing method for reducing a surface roughness of a semiconductor wafer by processing a film structure having at least two types of films beforehand disposed on the substrate, including steps of repeating an adsorption step of supplying activated particles into the processing chamber and allowing the particles to be adsorbed to a surface of a desirable film to be etched in the at least two types of films to allow the particles to combine with a material of the desirable film to form a reaction layer, a removal step of using plasma generated by supplying oxygen into the processing chamber to remove a deposit containing particles adhering to a surface of an undesirable film to be etched in the films, and a desorption step of desorbing and removing the reaction layer on the desirable film to be etched by heating the sample.
    Type: Application
    Filed: November 14, 2018
    Publication date: November 25, 2021
    Inventors: Hiroyuki KOBAYASHI, Nobuya MIYOSHI, Kazunori SHINODA, Yutaka KOUZUMA, Masaru IZAWA
  • Publication number: 20210358760
    Abstract: Provided is a plasma etching method which enables etching with high accuracy while controlling and reducing surface roughness of a transition metal film. The etching is performed for the transition metal film, which is formed on a sample and contains a transition metal element, by a first step of isotropically generating a layer of transition metal oxide on a surface of the transition metal film while a temperature of the sample is maintained at 100° C. or lower, a second step of raising the temperature of the sample to a predetermined temperature of 150° C. or higher and 250° C. or lower while a complexation gas is supplied to the layer of transition metal oxide, a third step of subliming and removing a reactant generated by an reaction between the complexation gas and the transition metal oxide formed in the first step while the temperature of the sample is maintained at 150° C. or higher and 250° C. or lower, and a fourth step of cooling the sample.
    Type: Application
    Filed: February 1, 2019
    Publication date: November 18, 2021
    Inventors: Sumiko FUJISAKI, Yoshihide YAMAGUCHI, Hiroyuki KOBAYASHI, Kazunori SHINODA, Kohei KAWAMURA, Yutaka KOUZUMA, Masaru IZAWA
  • Publication number: 20210242030
    Abstract: The present invention provides a plasma processing method or a plasma processing method, which allows the evenness of etching amounts to increase and the yield of processing to improve. A method for etching a tungsten film includes: a first step of depositing a fluorocarbon layer and forming an intermediate layer that contains tungsten and fluorine and is self-limiting between the fluorocarbon layer and the tungsten film by supplying plasma of an organic gas containing fluorine to a base material having the tungsten film over at least a part of the surface; and a second step of removing the fluorocarbon layer and the intermediate layer by using plasma of an oxygen gas.
    Type: Application
    Filed: April 22, 2019
    Publication date: August 5, 2021
    Inventors: Kazunori SHINODA, Hiroto OTAKE, Hiroyuki KOBAYASHI, Kohei KAWAMURA, Masaru IZAWA
  • Publication number: 20210151298
    Abstract: In a vacuum processing apparatus including: a vacuum container including a processing chamber therein; a plasma formation chamber; plate members being arranged between the processing chamber and the plasma formation chamber; and a lamp and a window member being arranged around the plate members, in order that a wafer and the plate members are heated by electromagnetic waves from the lamp, a bottom surface and a side surface of the window member is formed of a member transmitting the electromagnetic waves therethrough.
    Type: Application
    Filed: January 28, 2021
    Publication date: May 20, 2021
    Inventors: Hiroyuki KOBAYASHI, Nobuya MIYOSHI, Kazunori SHINODA, Kenji MAEDA, Yutaka KOUZUMA, Satoshi SAKAl, Masaru IZAWA
  • Patent number: 10937635
    Abstract: In a vacuum processing apparatus including: a vacuum container including a processing chamber therein; a plasma formation chamber; plate members being arranged between the processing chamber and the plasma formation chamber; and a lamp and a window member being arranged around the plate members, in order that a wafer and the plate members are heated by electromagnetic waves from the lamp, a bottom surface and a side surface of the window member is formed of a member transmitting the electromagnetic waves therethrough.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: March 2, 2021
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Hiroyuki Kobayashi, Nobuya Miyoshi, Kazunori Shinoda, Kenji Maeda, Yutaka Kouzuma, Satoshi Sakai, Masaru Izawa
  • Patent number: 10872779
    Abstract: An plasma etching method for etching a film layer includes a plurality of times repeating a step set including a first step of introducing a gas containing hydrogen fluoride into a processing chamber and supplying hydrogen fluoride molecules to the surface of an oxide film, a second step of exhausting the interior of the processing chamber in vacuum to remove the hydrogen fluoride, and a third step of introducing a gas containing hydrogen nitride into the processing chamber and supplying hydrogen nitride to the surface of the oxide film to form a compound layer containing nitrogen, hydrogen, and fluorine on the surface of the film layer, and removing the compound layer formed on the surface of the film layer. Foreign object contamination is prevented by inhibiting mixing of hydrogen fluoride gas and hydrogen nitride gas, and the etching amount is controlled by the number of times of repeating application thereof.
    Type: Grant
    Filed: February 26, 2019
    Date of Patent: December 22, 2020
    Assignee: HITACHI HIGH-TECH CORPORATION
    Inventors: Nobuya Miyoshi, Hiroyuki Kobayashi, Kazunori Shinoda, Kohei Kawamura, Kazumasa Ookuma, Yutaka Kouzuma, Masaru Izawa
  • Publication number: 20200328099
    Abstract: A plasma processing apparatus includes a stage disposed in a processing chamber for mounting a wafer, a plasma generation chamber disposed above the processing chamber for plasma generation using process gas, a plate member having multiple introduction holes, made of a dielectric material, disposed above the stage and between the processing chamber and the plasma generation chamber, and a lamp disposed around the plate member for heating the wafer. The plasma processing apparatus further includes an external IR light source, an emission fiber arranged in the stage, that outputs IR light from the external IR light source toward a wafer bottom, and a light collection fiber for collecting IR light from the wafer. Data obtained using only IR light from the lamp is subtracted from data obtained also using IR light from the external IR light source during heating of the wafer. Thus, a wafer temperature is determined.
    Type: Application
    Filed: June 26, 2020
    Publication date: October 15, 2020
    Inventors: Hiroyuki KOBAYASHI, Nobuya MIYOSHI, Kazunori SHINODA, Tatehito USUI, Naoyuki KOFUJI, Yutaka KOUZUMA, Tomoyuki WATANABE, Kenetsu YOKOGAWA, Satoshi SAKAI, Masaru IZAWA
  • Publication number: 20200006079
    Abstract: An plasma etching method for etching a film layer includes a plurality of times repeating a step set including a first step of introducing a gas containing hydrogen fluoride into a processing chamber and supplying hydrogen fluoride molecules to the surface of an oxide film, a second step of exhausting the interior of the processing chamber in vacuum to remove the hydrogen fluoride, and a third step of introducing a gas containing hydrogen nitride into the processing chamber and supplying hydrogen nitride to the surface of the oxide film to form a compound layer containing nitrogen, hydrogen, and fluorine on the surface of the film layer, and removing the compound layer formed on the surface of the film layer. Foreign object contamination is prevented by inhibiting mixing of hydrogen fluoride gas and hydrogen nitride gas, and the etching amount is controlled by the number of times of repeating application thereof.
    Type: Application
    Filed: February 26, 2019
    Publication date: January 2, 2020
    Inventors: Nobuya MIYOSHI, Hiroyuki KOBAYASHI, Kazunori SHINODA, Kohei KAWAMURA, Kazumasa OOKUMA, Yutaka KOUZUMA, Masaru IZAWA
  • Patent number: 10418254
    Abstract: In an etching method of etching a tungsten film, the method is provided to execute a generating a surface reaction layer on a tungsten film that is formed on a surface of a base material by supplying a reactive species including fluorine which is generated in plasma onto the base material for a first predetermined time in a state where the base material of which the tungsten film is formed on at least a portion of the surface is cooled to a melting point temperature or lower of a tungsten fluoride, and a removing the surface reaction layer that is generated on the tungsten film by heating the base material of which the surface reaction layer is generated on the tungsten film to a boiling point temperature or higher of the tungsten fluoride for a second predetermined time.
    Type: Grant
    Filed: February 27, 2018
    Date of Patent: September 17, 2019
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kazunori Shinoda, Naoyuki Kofuji, Hiroyuki Kobayashi, Nobuya Miyoshi, Kohei Kawamura, Masaru Izawa, Kenji Ishikawa, Masaru Hori
  • Publication number: 20190237302
    Abstract: In a vacuum processing apparatus including: a vacuum container including a processing chamber therein; a plasma formation chamber; plate members being arranged between the processing chamber and the plasma formation chamber; and a lamp and a window member being arranged around the plate members, in order that a wafer and the plate members are heated by electromagnetic waves from the lamp, a bottom surface and a side surface of the window member is formed of a member transmitting the electromagnetic waves therethrough.
    Type: Application
    Filed: April 9, 2019
    Publication date: August 1, 2019
    Inventors: Hiroyuki KOBAYASHI, Nobuya MIYOSHI, Kazunori SHINODA, Kenji MAEDA, Yutaka KOUZUMA, Satoshi SAKAl, Masaru IZAWA
  • Patent number: 10325781
    Abstract: A method for etching a titanium nitride film includes a first process of supplying reactive species, which include hydrogen and fluorine, to a base material including a titanium nitride film on at least a part of a surface, and a second process of vacuum-heating the base material to remove the surface reaction layer that is generated on the surface of the titanium nitride film in the first process.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: June 18, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kazunori Shinoda, Satoshi Sakai, Masaru Izawa, Nobuya Miyoshi, Hiroyuki Kobayashi, Yutaka Kouzuma, Kenji Ishikawa, Masaru Hori
  • Patent number: 10290472
    Abstract: In a vacuum processing apparatus including: a vacuum container including a processing chamber therein; a plasma formation chamber; plate members being arranged between the processing chamber and the plasma formation chamber; and a lamp and a window member being arranged around the plate members, in order that a wafer and the plate members are heated by electromagnetic waves from the lamp, a bottom surface and a side surface of the window member is formed of a member transmitting the electromagnetic waves therethrough.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: May 14, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Hiroyuki Kobayashi, Nobuya Miyoshi, Kazunori Shinoda, Kenji Maeda, Yutaka Kouzuma, Satoshi Sakai, Masaru Izawa