Patents by Inventor Kazuo Hikida

Kazuo Hikida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200306812
    Abstract: The entirety or a part of this hot stamped product includes, as a chemical composition, by mass %, C: 0.001% or more and less than 0.080%, Si: 2.50% or less, Mn: 0.01% or more and less than 0.50%, P: 0.200% or less, S: 0.0200% or less, sol.Al: 0.001% to 2.500%, N: 0.0200% or less, Cr: 0.30% or more and less than 2.00%, and a remainder: Fe and impurities, in which a metallographic structure contains, by vol %, ferrite: more than 60.0%, martensite: 0% or more and less than 10.0%, and bainite: 0% or more and less than 20.0%, a tensile strength is less than 700 MPa, and ?TS, which is a decrease in the tensile strength after a heat treatment at 170° C. for 20 minutes, is 100 MPa or less.
    Type: Application
    Filed: October 2, 2018
    Publication date: October 1, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Jun HAGA, Kazuo HIKIDA
  • Publication number: 20200232056
    Abstract: The present invention provides a hot stamped body excellent in bendability, ductility, impact resistance, and hydrogen embrittlement resistance and small in scattering in hardness. The hot stamped body according to the present invention is provided with a middle part in sheet thickness and a softened layer arranged at both sides or one side of the middle part in sheet thickness.
    Type: Application
    Filed: February 20, 2018
    Publication date: July 23, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yuri TODA, Genki ABUKAWA, Daisuke MAEDA, Kazuo HIKIDA
  • Publication number: 20200230681
    Abstract: The present invention, in consideration of the problems in the prior art, provides a hot stamped body simultaneously achieving the high bendability and high ductility for realizing impact resistance and also hydrogen embrittlement resistance and kept down in scattering in hardness. The hot stamped body according to the present invention is provided with a middle part in sheet thickness and a softened layer arranged at both sides or one side of the middle part in sheet thickness.
    Type: Application
    Filed: February 20, 2018
    Publication date: July 23, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yuri TODA, Genki ABUKAWA, Daisuke MAEDA, Kazuo HIKIDA, Shingo FUJINAKA
  • Publication number: 20200232058
    Abstract: There is provided a steel sheet including an inner layer and a hard layer formed on one or both surfaces of the inner layer, wherein each content of C and Mn in the hard layer is more than each content of C and Mn in the inner layer, a thickness of the hard layer is 20 ?m or more and a total of the thickness of the hard layer is ? or less of the entire sheet thickness, an average micro-Vickers hardness of the hard layer is 400 HV or more and less than 800 HV, an average micro-Vickers hardness of the inner layer is 350 HV or more and is 50 HV or more smaller than a hardness of the hard layer, and a screw dislocation density of the inner layer is 2.0×1013 m/m3 or more.
    Type: Application
    Filed: February 20, 2018
    Publication date: July 23, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Kengo TAKEDA, Riki OKAMOTO, Kazuo HIKIDA, Katsuya NAKANO, Yuya SUZUKI, Genki ABUKAWA
  • Patent number: 10718033
    Abstract: A heat-treated steel material is provided having strength of 2.000 GPa or more. The heat-treated steel material includes a chemical composition represented by, in mass %: C: 0.05% to 0.30%; Si: 0.50% to 5.00%; Mn: 2.0% to 10.0%; Cr: 0.01% to 1.00%; Ti: 0.010% to 0.100%; B: 0.0020% to 0.0100%; P: 0.050% or less; S: 0.0500% or less; N: 0.0100% or less; Ni: 0% to 2.0%; each of Cu, Mo, and V: 0% to 1.0%; each of Al and Nb: 0% to 1.00%; and the balance: Fe and impurities. “4612×[C]+51×[Si]+102×[Mn]+605>2000” is satisfied. The heat-treated steel material includes a microstructure in which 90 volume % or more is formed of martensite, and a dislocation density in the martensite is equal to or more than 1.2×1016 m?2.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: July 21, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Kazuo Hikida, Nobusato Kojima
  • Publication number: 20200181728
    Abstract: [Object] To provide a steel sheet for carburizing that demonstrates improved ductility, and a method for manufacturing the same. [Solution] A steel sheet consisting of, in mass %, C: more than or equal to 0.02%, and less than 0.30%, Si: more than or equal to 0.005%, and less than 0.5%, Mn: more than or equal to 0.01%, and less than 3.0%, P: less than or equal to 0.1%, S: less than or equal to 0.1%, sol. Al: more than or equal to 0.0002%, and less than or equal to 3.0%, N: less than or equal to 0.2%, Ti: more than or equal to 0.010%, and less than or equal to 0.150%, and the balance: Fe and impurities, in which the number of carbides per 1000 ?m2 is 100 or less, percentage of number of carbides with an aspect ratio of 2.0 or smaller is 10% or larger relative to the total carbides, average equivalent circle diameter of carbide is 5.0 ?m or smaller, and average crystal grain size of ferrite is 10 ?m or smaller.
    Type: Application
    Filed: August 30, 2018
    Publication date: June 11, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Motonori HASHIMOTO, Kazuo HIKIDA, Yuri TODA
  • Publication number: 20200181744
    Abstract: [Object] To provide a steel sheet for carburizing that demonstrates improved extreme deformability prior to carburizing, and a method for manufacturing the same. [Solution] A steel sheet consisting of, in mass %, C: more than or equal to 0.02%, and less than 0.30%, Si: more than or equal to 0.005%, and less than 0.5%, Mn: more than or equal to 0.01%, and less than 3.0%, P: less than or equal to 0.1%, S: less than or equal to 0.1%, sol. Al: more than or equal to 0.0002%, and less than or equal to 3.0%, N: less than or equal to 0.2%, and the balance: Fe and impurities, in which average value of X-ray random intensity ratio, assignable to an orientation group of ferrite crystal grain ranging from {100}<011> to {223}<110>, is 7.0 or smaller, average equivalent circle diameter of carbide is 5.0 ?m or smaller, percentage of number of carbides with an aspect ratio of 2.
    Type: Application
    Filed: August 30, 2018
    Publication date: June 11, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yuri TODA, Kazuo HIKIDA, Motonori HASHIMOTO
  • Patent number: 10662494
    Abstract: A heat-treated steel material is provided having strength of 1.800 GPa or more. The heat-treated steel material includes a chemical composition represented by, in mass %: C: 0.05% to 0.30%; Mn: 2.0% to 10.0%; Cr: 0.01% to 1.00%; Ti: 0.010% to 0.100%; B: 0.0010% to 0.0100%; Si: 0.08% or less; P: 0.050% or less; S: 0.0500% or less; N: 0.0100% or less; Ni: 0% to 2.0%; each of Cu, Mo, and V: 0% to 1.0%; each of Al and Nb: 0% to 1.00%; and the balance: Fe and impurities. “4612×[C]+102×[Mn]+605?1800” is satisfied where [C] denotes a C content and [Mn] denotes a Mn content. The heat-treated steel material includes a microstructure in which 90 volume % or more is formed of martensite, and a dislocation density in the martensite is equal to or more than 9.0×1015 m?2.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: May 26, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Kazuo Hikida, Nobusato Kojima
  • Publication number: 20200094525
    Abstract: A steel sheet for hot stamping includes a steel structure represented by an area fraction of bainite, fresh martensite and tempered martensite: 80% or more in total, and a product of a number density (pieces/?m2) of carbides and a proportion of carbides precipitated into prior austenite grains in carbides: 0.50 or more.
    Type: Application
    Filed: January 17, 2017
    Publication date: March 26, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Genki ABUKAWA, Kunio HAYASHI, Kazuo HIKIDA, Kaoru KAWASAKI
  • Publication number: 20200071799
    Abstract: Steel sheet low in cost and improved in fatigue characteristics without causing a drop in the cold formability, characterized in that it comprises an inner layer and a hard layer on one or both surfaces of the inner layer, a thickness of the hard layer is 20 ?m or more and 40% or less of the thickness of the steel sheet, an average micro-Vickers hardness of the hard layer is 240 HV or more and less than 400 HV, an amount of C of the hard layer is 0.4 mass % or less, an amount of N is 0.02 mass % or less, a variation of hardness measured by a nanoindenter at a depth of 10 from the surface of the hard layer is a standard deviation of 2.0 or less, an average micro-Vickers hardness of the inner layer is 80 HV or more and less than 400 HV, a volume rate of carbides contained in the inner layer is less than 2.00%, and the average micro-Vickers hardness of the hard layer is 1.05 times or more the average micro-Vickers hardness of the inner layer.
    Type: Application
    Filed: February 20, 2018
    Publication date: March 5, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Kengo TAKEDA, Riki OKAMOTO, Kazuo HIKIDA, Katsuya NAKANO, Yuya SUZUKI, Genki ABUKAWA
  • Patent number: 10570470
    Abstract: A steel sheet for hot stamping includes a predetermined chemical composition containing: C: 0.08% or more and less than 0.20%; Si: 0.003% to 0.2%; Mn: 1.6% to 3.5%, and others, and further includes a steel structure expressed by, in an area ratio: bainite: 1% to 95%; ferrite: 5% to 94%; and balance: one or more selected from the group consisting of pearlite, martensite and retained austenite. When an Mn content is represented by [Mn], a C content is represented by [C], an expression of “[Mn]+6.67×[C]?2.73?0” is satisfied.
    Type: Grant
    Filed: August 15, 2013
    Date of Patent: February 25, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Akari Tamaki, Kazuo Hikida
  • Patent number: 10563281
    Abstract: A heat-treated steel sheet member having a composition including, by mass %: C: 0.05 to 0.50%; Si: 0.50 to 5.0%; Mn: 1.5 to 4.0%; P: 0.05% or less; S: 0.05% or less; N: 0.01% or less; Ti: 0.01 to 0.10%; B: 0.0005 to 0.010%; Cr: 0 to 1.0%; Ni: 0 to 2.0%; Cu; 0 to 1.0%; Mo: 0 to 1.0%; V: 0 to 1.0%; Ca: 0 to 0.01%; Al: 0 to 1.0%; Nb: 0 to 1.0%; REM: 0 to 0.1%; and the balance: Fe and impurities. The steel sheet member has a microstructure comprising mainly martensite and retained austenite of which a volume ratio is 0.2 to 1.0%, a number density of retained carbide in the steel sheet member having circle-equivalent diameters of 0.1 mm or larger is 4.0×103/mm2 or lower, a tensile strength is 1.4 GPa or higher, and a yield ratio is 0.65 or higher.
    Type: Grant
    Filed: April 7, 2016
    Date of Patent: February 18, 2020
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Yoshihiro Suwa, Shinichiro Tabata, Masafumi Azuma, Kazuo Hikida
  • Publication number: 20200016866
    Abstract: There is provided a hot stamped body including a middle part in sheet thickness and a surface layer arranged at both sides or one side of the middle part in sheet thickness, further including an intermediate layer formed between the middle part in sheet thickness and each surface layer so as to adjoin them, wherein the middle part in sheet thickness has a predetermined composition, the middle part in sheet thickness has a hardness of 500 Hv or more and 800 Hv or less, the surface layer has a hardness change ?H1 in the sheet thickness direction of 100 Hv or more and less than 200 Hv, and the intermediate layer has a hardness change ?H2 in the sheet thickness direction of 10 Hv or more and less than 50 Hv.
    Type: Application
    Filed: February 20, 2018
    Publication date: January 16, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yuri TODA, Genki ABUKAWA, Daisuke MAEDA, Kazuo HIKIDA
  • Publication number: 20200001342
    Abstract: There is provided a hot stamped body including a middle part in sheet thickness and a surface layer arranged at both sides or one side of the middle part in sheet thickness, further including an intermediate layer formed between the middle part in sheet thickness and each surface layer so as to adjoin them, wherein the middle part in sheet thickness has a predetermined composition, the middle part in sheet thickness has a hardness of 500 Hv or more and 800 Hv or less, the surface layer has a hardness change ?H1 in the sheet thickness direction of 10 Hv or more and less than 200 Hv, and the intermediate layer has a hardness change ?H2 in the sheet thickness direction of 50 Hv or more and less than 200 Hv.
    Type: Application
    Filed: February 20, 2018
    Publication date: January 2, 2020
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Yuri TODA, Genki ABUKAWA, Daisuke MAEDA, Kazuo HIKIDA, Shingo FUJINAKA
  • Publication number: 20190338381
    Abstract: A method for manufacturing a quenched molding according to the present disclosure is a method including a first heat treatment process of heating a blanked steel material to a temperature higher than its Ac3 transformation point to perform austenite transformation, and then cooling to induce martensite transformation or bainite transformation, and a second heat treatment process of heating the steel material that has undergone the first heat treatment process to a temperature higher than the Ac3 transformation point to perform austenite transformation, and then cooling to induce martensite transformation. After the steel material has been heated to a temperature higher than the Ac3 transformation point in at least one process from out of the first heat treatment process or the second heat treatment process, molding is completed at a temperature higher than an Ar3 transformation point.
    Type: Application
    Filed: November 22, 2017
    Publication date: November 7, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Yoshiaki NAKAZAWA, Shinichiro TABATA, Kazuo HIKIDA, Toshiya SUZUKI, Atsuo KOGA, Koichi HAMADA
  • Publication number: 20190330711
    Abstract: A blank material is formed from a steel sheet, a first quenching of the blank material is performed, and a second quenching of the blank material is performed after the first quenching. When the first quenching is performed, the blank material is heated to a first temperature of not lower than (Ac3 point—50)° C. nor higher than 1200° C. at an average heating rate of 2° C./sec or more, and the blank material is cooled from the first temperature to a second temperature of 250° C. or lower. When the second quenching is performed, the blank material is heated from the second temperature to a third temperature of not lower than (Ac3 point—50)° C. nor higher than 1200° C. at an average heating rate of 2° C./sec or more, and the blank material is cooled from the third temperature to a fourth temperature of 250° C. or lower. Forming of the blank material is performed in the first quenching or the second quenching or both of the above.
    Type: Application
    Filed: January 17, 2017
    Publication date: October 31, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Genki ABUKAWA, Kunio HAYASHI, Kazuo HIKIDA, Kaoru KAWASAKI
  • Patent number: 10435761
    Abstract: A heat-treated steel material includes: a chemical composition expressed by, in mass %: C: 0.16% to 0.38%; Mn: 0.6% to 1.5%; Cr: 0.4% to 2.0%; Ti: 0.01% to 0.10%; B: 0.001% to 0.010%; Si: 0.20% or less; P: 0.05% or less; S: 0.05% or less; N: 0.01% or less; Ni: 0% to 2.0%; Cu: 0% to 1.0%; Mo: 0% to 1.0%; V: 0% to 1.0%; Al: 0% to 1.0%; Nb: 0% to 1.0%; REM: 0% to 0.1%; and the balance: Fe and impurities; and a structure expressed by: retained austenite: 1.5 volume % or less; and the balance: martensite.
    Type: Grant
    Filed: June 6, 2014
    Date of Patent: October 8, 2019
    Assignee: NIPPON STEEL CORPORATION
    Inventors: Shinichiro Tabata, Kazuo Hikida, Nobusato Kojima, Naomitsu Mizui
  • Publication number: 20190218637
    Abstract: A manufacturing method of a steel component includes: heating a steel sheet in a carburizing atmosphere to form a carburized layer on a surface of the steel sheet, the steel sheet having: a chemical composition represented by: in mass %, C: 0.0005 to 0.1%; Si: 0.01 to 2.0%; Mn: 0.05 to 3.0%; Al: 0.9% or less; P: 0.05% or less; S: 0.01% or less; Ti: 0.0 to 0.2%; Nb: 0.0 to 0.1%; Cr: 0 to 2%; Mo: 0.0 to 0.2%; B: 0.000 to 0.005%; and the balance: Fe and impurities; and a steel structure represented by ferrite with an area fraction of 70% or more; and forming the steel sheet by using metal dies, and performing quenching on the steel sheet in a state of housing the steel sheet in the metal dies to transform the carburized layer into martensite and make a part of the steel sheet on the further inside than the carburized layer to be a steel structure represented by ferrite with an area fraction of 50% or more.
    Type: Application
    Filed: October 31, 2016
    Publication date: July 18, 2019
    Applicant: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Riki OKAMOTO, Nobusato KOJIMA, Kazuo HIKIDA, Noriyuki MAEKAWA
  • Publication number: 20190100816
    Abstract: In a mold, at least one of a lower mold and an upper mold includes a coolant supply passage through which a liquid coolant is supplied to an inner space of a recess, and the mold includes an air escape passage through which air in the inner space of the recess is discharged upward.
    Type: Application
    Filed: April 18, 2017
    Publication date: April 4, 2019
    Applicant: AISIN AW INDUSTRIES CO., LTD.
    Inventors: Akihiro SEKI, Nobuyuki NAITO, Yoichi JINZA, Hiroshi FUKUCHI, Kazuo HIKIDA, Ken TAKATA, Naruhiko NOMURA
  • Patent number: 10060005
    Abstract: A high-strength hot-formed steel sheet member exhibiting both a consistent hardness and delayed-fracture resistance, and is characterized in that: the high-strength hot-formed steel sheet member has a prescribed chemical composition; the degree of Mn segregation ? (=[maximum Mn concentration (mass %) at the sheet center in the thickness direction]/[average Mn concentration (mass %) at a depth of ¼ of the total thickness of the sheet from the surface]) is less than or equal to 1.6; the steel purity value as defined in JIS G 0555 (2003) is less than or equal to 0.08%; the average grain size for prior ? grains is less than or equal to 10 ?m; and the number density of the residual carbides is less than or equal to 4×103 particles/mm2.
    Type: Grant
    Filed: March 26, 2015
    Date of Patent: August 28, 2018
    Assignee: NIPPON STEEL & SUMITOMO METAL CORPORATION
    Inventors: Kazuo Hikida, Shinichiro Tabata, Nobusato Kojima, Takahiro Moriki