Patents by Inventor Kazuo Kawahito

Kazuo Kawahito has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9214289
    Abstract: An electrolytic capacitor includes a multilayered-capacitor-elements unit, a pair of positive electrode terminals, a negative electrode terminal, and an outer-package resin. The multilayered-capacitor-elements unit includes multiple capacitor elements of which positive electrodes are oriented oppositely to each other. The positive electrodes are connected to the positive electrode terminals, respectively, and negative electrodes of the capacitor elements are connected to the negative electrode terminal. Each of the positive electrode terminals includes a bottom section and a double-back section on which the positive electrodes of the capacitor element is disposed. The double-back section is formed by doubling over an end section extending toward the negative electrode.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: December 15, 2015
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Junichi Kurita, Kazuo Kawahito, Masatoshi Tasei, Kazuaki Aoyama
  • Patent number: 8896984
    Abstract: A solid electrolytic capacitor includes a capacitor element including a cathode portion and an anode portion, a cathode terminal bonded to the cathode portion, an anode terminal bonded to the anode portion, and an enclosure resin covering the capacitor element. The cathode terminal includes a cathode lower surface portion, a cathode connection portion, and a cathode support portion. The cathode connection portion is connected to an end portion of the cathode lower surface portion on an anode side and bonded to the cathode portion through a conductive adhesive. The cathode support portion is connected to a side portion of the cathode lower surface and brought into contact with a lower surface of the cathode portion on an end portion side of the cathode portion without involving the conductive adhesive therebetween.
    Type: Grant
    Filed: February 8, 2013
    Date of Patent: November 25, 2014
    Assignee: Panasonic Corporation
    Inventors: Kazuo Kawahito, Takashi Iwakiri
  • Publication number: 20130329341
    Abstract: An electrolytic capacitor includes a multilayered-capacitor-elements unit, a pair of positive electrode terminals, a negative electrode terminal, and an outer-package resin. The multilayered-capacitor-elements unit includes multiple capacitor elements of which positive electrodes are oriented oppositely to each other. The positive electrodes are connected to the positive electrode terminals, respectively, and negative electrodes of the capacitor elements are connected to the negative electrode terminal. Each of the positive electrode terminals includes a bottom section and a double-back section on which the positive electrodes of the capacitor element is disposed. The double-back section is formed by doubling over an end section extending toward the negative electrode.
    Type: Application
    Filed: March 23, 2012
    Publication date: December 12, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Junichi Kurita, Kazuo Kawahito, Masatoshi Tasei, Kazuaki Aoyama
  • Patent number: 7839151
    Abstract: A capacitor inspection device includes a substrate made of an insulating material, a first conductor unit and a second conductor unit arranged on the substrate, a signal input unit and a signal output unit attached to the substrate, a network analyzer and a pressurizing unit. The network analyzer has an input port connected to the signal input unit and an output port connected to the signal output unit. The first and second conductor units make contact with an anode and a cathode of a capacitor, respectively. The pressurizing unit presses the anode of capacitor onto the first conductor unit and the cathode onto the second conductor unit.
    Type: Grant
    Filed: April 18, 2006
    Date of Patent: November 23, 2010
    Assignee: Panasonic Corporation
    Inventors: Junichi Kurita, Hiroshi Higashitani, Kazuo Kawahito, Tsuyoshi Yoshino
  • Patent number: 7835139
    Abstract: Cathode electrode part 5 of flat plate-like element 1 is joined with cathode com terminal 7 with a conductive adhesive or the like. Element mounting part 6a of anode terminal 6 is provided with a pair of joint parts 6b for wrapping anode electrode part 4 from both sides. The tips of joint parts 6b and anode electrode part 4 are joined by laser welding such that the ratio (w/d) of the width (w) of each tip of joint parts 6b and the diameter (d) of the welding trace to be welded is 0.5 to 1.5, and more preferably, 0.5 to 1.25 for providing low ESR means for concentrating the quantity of heat at the time of welding on welding parts 6c without escape. Therefore, a stable welded state is obtained, so that the ESR is improved for achieving low ESR of the solid capacitor.
    Type: Grant
    Filed: March 18, 2008
    Date of Patent: November 16, 2010
    Assignee: Panasonic Corporation
    Inventors: Masato Ozawa, Katsuhisa Ishizaki, Kazuo Kawahito, Minoru Omori, Yoshiro Maruhashi
  • Patent number: 7706132
    Abstract: A solid electrolytic capacitor includes a negative terminal, first to fourth capacitor elements coupled to the negative terminal, first and second positive terminals connected to the first to fourth capacitor elements, and a package resin covering the first to fourth capacitor elements. Each of the first to fourth capacitor elements has a first end and a second end opposite to the first end, and each of the first to fourth capacitor elements includes a negative electrode provided at the first end and a positive electrode provided at the second end. The first to fourth capacitor elements are stacked in this order. The positive electrodes of the first and fourth capacitor elements extend in a first direction from the respective negative electrodes of the first and fourth capacitor elements. The positive electrodes of the second and third capacitor elements extend in a second direction, opposite to the first direction, from the respective negative electrodes of the second and third capacitor elements.
    Type: Grant
    Filed: June 1, 2009
    Date of Patent: April 27, 2010
    Assignee: Panasonic Corporation
    Inventors: Kazuo Kawahito, Minoru Oomori, Junichi Kurita, Masatoshi Tasei, Masato Ozawa
  • Publication number: 20090296318
    Abstract: A solid electrolytic capacitor includes a negative terminal, first to fourth capacitor elements coupled to the negative terminal, first and second positive terminals connected to the first to fourth capacitor elements, and a package resin covering the first to fourth capacitor elements. Each of the first to fourth capacitor elements has a first end and a second end opposite to the first end, and each of the first to fourth capacitor elements includes a negative electrode provided at the first end and a positive electrode provided at the second end. The first to fourth capacitor elements are stacked in this order. The positive electrodes of the first and fourth capacitor elements extend in a first direction from the respective negative electrodes of the first and fourth capacitor elements. The positive electrodes of the second and third capacitor elements extend in a second direction, opposite to the first direction, from the respective negative electrodes of the second and third capacitor elements.
    Type: Application
    Filed: June 1, 2009
    Publication date: December 3, 2009
    Applicant: PANASONIC CORPORATION
    Inventors: Kazuo Kawahito, Minoru Oomori, Junichi Kurita, Masatoshi Tasei, Masato Ozawa
  • Publication number: 20080232027
    Abstract: Cathode electrode part 5 of flat plate-like element 1 is joined with cathode com terminal 7 with a conductive adhesive or the like. Element mounting part 6a of anode terminal 6 is provided with a pair of joint parts 6b for wrapping anode electrode part 4 from both sides. The tips of joint parts 6b and anode electrode part 4 are joined by laser welding such that the ratio (w/d) of the width (w) of each tip of joint parts 6b and the diameter (d) of the welding trace to be welded is 0.5 to 1.5, and more preferably, 0.5 to 1.25 for providing low ESR means for concentrating the quantity of heat at the time of welding on welding parts 6c without escape. Therefore, a stable welded state is obtained, so that the ESR is improved for achieving low ESR of the solid capacitor.
    Type: Application
    Filed: March 18, 2008
    Publication date: September 25, 2008
    Inventors: Masato OZAWA, Katsuhisa Ishizaki, Kazuo Kawahito, Minoru Omori, Yoshiro Maruhashi
  • Publication number: 20080169825
    Abstract: A capacitor inspection device includes a substrate made of an insulating material, a first conductor unit and a second conductor unit arranged on the substrate, a signal input unit and a signal output unit attached to the substrate, a network analyzer and a pressurizing unit. The network analyzer has an input port connected to the signal input unit and an output port connected to the signal output unit. The first and second conductor units make contact with an anode and a cathode of a capacitor, respectively. The pressurizing unit presses the anode of capacitor onto the first conductor unit and the cathode onto the second conductor unit.
    Type: Application
    Filed: April 18, 2006
    Publication date: July 17, 2008
    Inventors: Junichi Kurita, Hiroshi Higashitani, Kazuo Kawahito, Tsuyoshi Yoshino
  • Patent number: 7394649
    Abstract: A solid electrolytic capacitor includes a capacitor element, an anode terminal, a cathode terminal, and an outer casing resin. The anode and cathode terminals constitute parts of the mounting surface, and are drawn immediately below the capacitor element. The anode terminal and the cathode terminal are electrically coupled with an anode leader of the capacitor element and a cathode layer, respectively. The outer casing resin covers the capacitor element, and exposes the anode and cathode terminals on the mounting surface. At least one recess is provided on a mounting surface side of at least one of the anode and cathode terminals having a larger area projected onto the mounting surface.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: July 1, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Katsuyuki Nakamura, Kazuo Kawahito, Takahiro Jodoi, Hideto Yamaguchi
  • Patent number: 7365961
    Abstract: A solid electrolytic capacitor includes a planar solid electrolytic capacitor element having anode and cathode portions; anode and cathode terminals; and insulating coating resin. The anode terminal is electrically connected at the top surface thereof to the anode portion. The cathode terminal is electrically connected at the top surface side thereof to the cathode portion. The coating resin integrally coats the capacitor element so as to expose the bottom surfaces of the anode and cathode terminals. The anode and cathode terminals are disposed as close to each other as not more than 3 mm. The anode and cathode terminals have stair steps on both sides thereof and are connected to the anode and cathode portions at joint faces, respectively. The anode joint faces and the cathode joint faces are coated with coating resin. The solid electrolytic capacitor is provided with the anode joint faces and/or the cathode joint faces.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: April 29, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Junichi Kurita, Tsuyoshi Yoshino, Hirotoshi Toji, Kazuo Kawahito, Takashi Iwakiri, Hiroshi Serikawa, Kenji Kuranuki
  • Publication number: 20080002335
    Abstract: A solid electrolytic capacitor includes a planar solid electrolytic capacitor element having anode and cathode portions; anode and cathode terminals; and insulating coating resin. The anode terminal is electrically connected at the top surface thereof to the anode portion. The cathode terminal is electrically connected at the top surface side thereof to the cathode portion. The coating resin integrally coats the capacitor element so as to expose the bottom surfaces of the anode and cathode terminals. The anode and cathode terminals are disposed as close to each other as not more than 3 mm. The anode and cathode terminals have stair steps on both sides thereof and are connected to the anode and cathode portions at joint faces, respectively. The anode joint faces and the cathode joint faces are coated with coating resin. The solid electrolytic capacitor is provided with the anode joint faces and/or the cathode joint faces.
    Type: Application
    Filed: October 11, 2005
    Publication date: January 3, 2008
    Inventors: Junichi Kurita, Tsuyoshi Yoshino, Hirotoshi Toji, Kazuo Kawahito, Takashi Iwakiri, Hiroshi Serikawa, Kenji Kuranuki
  • Publication number: 20070242409
    Abstract: A solid electrolytic capacitor includes a capacitor element, an anode terminal, a cathode terminal, and an outer casing resin. The anode and cathode terminals constitute parts of the mounting surface, and are drawn immediately below the capacitor element. The anode terminal and the cathode terminal are electrically coupled with an anode leader of the capacitor element and a cathode layer, respectively. The outer casing resin covers the capacitor element, and exposes the anode and cathode terminals on the mounting surface. At least one recess is provided on a mounting surface side of at least one of the anode and cathode terminals having a larger area projected onto the mounting surface.
    Type: Application
    Filed: April 11, 2007
    Publication date: October 18, 2007
    Inventors: Katsuyuki Nakamura, Kazuo Kawahito, Takahiro Jodoi, Hideto Yamaguchi
  • Patent number: 7235978
    Abstract: A device measures an impedance of an electronic component with using an impedance measuring apparatus. The impedance measuring device includes first and second probes to be connected to measuring terminals of the impedance measuring apparatus, an anisotropic conductive sheet, and a pressing member for pressing the electronic component toward the first and second probes. The first probe has a first contact surface. The second probe has a second contact surface flush with the first contact surface. The anisotropic conductive sheet has a first surface contacting the first and second contact surface, and a second surface opposite to the first surface. The pressing member causes first and second external terminals of the electronic component to contact the anisotropic conductive sheet. The conductive sheet includes an insulating elastic sheet and plural conductive wires penetrating the elastic sheet to expose from the first surface and the second surface.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: June 26, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Youichi Aoshima, Kazuo Kawahito, Junichi Kurita
  • Publication number: 20070052431
    Abstract: A device measures an impedance of an electronic component with using an impedance measuring apparatus. The impedance measuring device includes first and second probes to be connected to measuring terminals of the impedance measuring apparatus, an anisotropic conductive sheet, and a pressing member for pressing the electronic component toward the first and second probes. The first probe has a first contact surface. The second probe has a second contact surface flush with the first contact surface. The anisotropic conductive sheet has a first surface contacting the first and second contact surface, and a second surface opposite to the first surface. The pressing member causes first and second external terminals of the electronic component to contact the anisotropic conductive sheet. The conductive sheet includes an insulating elastic sheet and plural conductive wires penetrating the elastic sheet to expose from the first surface and the second surface.
    Type: Application
    Filed: September 7, 2006
    Publication date: March 8, 2007
    Inventors: Youichi Aoshima, Kazuo Kawahito, Junichi Kurita
  • Patent number: 6614063
    Abstract: A solid electrolytic capacitor includes an anode element made of a valve action metal, a dielectric oxide film formed on a surface of the anode element, a solid electrolytic layer formed on a surface of the dielectric oxide film, and a cathode layer formed on a surface of the solid electrolytic layer. The solid electrolytic layer has an iron concentration not greater than 100 ppm. Alternatively or in combination therewith, a weight fraction of residues in the solid electrolytic layer is smaller than 5 wt %. The polymerization residue is an oxidizing agent and a monomer that is produced when such solid electrolytic layer is formed.
    Type: Grant
    Filed: December 1, 2000
    Date of Patent: September 2, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Chiharu Hayashi, Yasunobu Tsuji, Hisataka Kato, Kazuo Kawahito, Yoshiki Hashimoto, Emiko Igaki, Hiroshi Shimada, Mitsuo Terada
  • Publication number: 20010003501
    Abstract: A solid electrolytic capacitor includes an anode element made of a valve action metal, a dielectric oxide film formed on a surface of the anode element, a solid electrolytic layer formed on a surface of the dielectric oxide film, and a cathode layer formed on a surface of the solid electrolytic layer. The solid electrolytic layer has an iron concentration not greater than 100 ppm. Alternatively or in combination therewith, a weight fraction of residues in the solid electrolytic layer is smaller than 5 wt %. The polymerization residue is an oxidizing agent and a monomer that is produced when such solid electrolytic layer is formed.
    Type: Application
    Filed: December 1, 2000
    Publication date: June 14, 2001
    Inventors: Chiharu Hayashi, Yasunobu Tsuji, Hisataka Kato, Kazuo Kawahito, Yoshiki Hashimoto, Emiko Igaki, Hiroshi Shimada, Mitsuo Terada
  • Patent number: D569799
    Type: Grant
    Filed: January 17, 2006
    Date of Patent: May 27, 2008
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Kazuo Kawahito, Kenji Kuranuki, Junichi Kurita, Takashi Iwakiri