Patents by Inventor Kazuo Uebaba

Kazuo Uebaba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6890304
    Abstract: The present invention relates to a device for diagnosing physiological state based on blood pulse waves detected in the body. It is the objective of the present invention to provide a device which correctly diagnoses the current physiological state based on changes in physiological state measured over a specified period of time in the past while taking into consideration the cyclical variation exhibited in physiological state.
    Type: Grant
    Filed: June 2, 2000
    Date of Patent: May 10, 2005
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6554763
    Abstract: In order to enable a user to easily and quickly ascertain his body's state of relaxation, the device is provided with: a physiological information extractor 101 for extracting an indicator expressing physiological state from user Y; a storage member 102 for storing the extracted indicator; a judging member 103 for analyzing the change over time in the stored indicator, and determining whether or not the user's condition has improved toward a state of greater relaxation based on the indicator; and a notifying member 104 for providing notice that the body has moved toward a state of greater relaxation, if the results of the aforementioned determination are affirmative.
    Type: Grant
    Filed: April 4, 2000
    Date of Patent: April 29, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6361501
    Abstract: When pulse waveform MH is detected by pulse wave detection sensor unit 130, wavelet transformer 10 performs wavelet transformation on pulse waveform MH and generates analyzed pulse wave data MKD. This analyzed pulse wave data MKD consists of a time region in which one heartbeat is divided into eighths, and the frequency region of 0-4 Hz which has been divided into eighths. Frequency corrector 11 generates corrected pulse wave data MKD′ by performing frequency correction on analyzed pulse wave data MKD. Pulse type data generator 12 compares corrected pulse wave data MKD′ over each frequency-time region, and generates pulse type data ZD indicating the type of pulse. Display 13 displays the pulse type for pulse waveform MH based on pulse type data ZD.
    Type: Grant
    Filed: June 21, 1999
    Date of Patent: March 26, 2002
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6334850
    Abstract: An optical type pulse wave detection section 1 detects the pulse waveform MH above the skin while moving in the circumferential direction of the arm, when a manual position change mechanism 2 is operated. Capillary vessels and arterioles surrounding a radial artery 24 are formed inside the skin, and pulsation of the capillary vessels and arterioles are opposite in polarity. When a polarity detection section 3 outputs a polarity detection signal KS showing the polarity of the pulse waveform MH, the polarity is displayed on a display 4. Accordingly, a subject can position the pulse wave detection section 1 above the arterioles surrounding the artery by operating the manual position change mechanism 2 while observing the display 4, allowing the pulse waveform MH to be detected with an optimal SN ratio. In addition, the pulse waveform of the arterioles can be detected by specifying the position of the artery without causing a constrictive feeling to the subject.
    Type: Grant
    Filed: August 19, 1999
    Date of Patent: January 1, 2002
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6331159
    Abstract: A non-invasive device for evaluating circulatory state parameters, and specifically, a pulsewave analysis device capable of evaluation by separating blood vessel compliance and blood vessel resistance into central and peripheral components of the arterial system is provided. Microcomputer 4 detects the waveform at a test subject's radius artery via pulsewave detector 1, and uptakes the stroke volume in the test subject which is measured by a stroke-volume measurer. Next, based on the measured stroke volume, microcomputer 4 adjusts the values of each element in a lumped five parameter model made up of an electrical circuit which models the arterial system from the center to the periphery of the body, so that the response waveform obtained when an electric signal corresponding to the pressure waveform at the proximal portion of the aorta in a test subject is provided to the electric circuit coincides with the waveform at the radius artery.
    Type: Grant
    Filed: August 11, 2000
    Date of Patent: December 18, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6293915
    Abstract: An FFT treating section (40) carries out the frequency analysis of a pulse waveform MHj excluding a body movement component to yield pulse wave analysis data MKD and then a tidal wave-character extracting section (50) and a dicrotic wave-character extracting section (60) yield a tidal wave-character data (TWD) and a dicrotic wave-character data (DWD) showing the characteristics of a tidal wave and dicrotic wave respectively. Then, a pulse condition judging section (70) yields pulse condition data (ZD) on the basis of this data (TWD, DWD) and in succession a notifying section (80) advises of the pulse condition of a subject.
    Type: Grant
    Filed: July 16, 1999
    Date of Patent: September 25, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama, Hiroshi Kasahara
  • Patent number: 6287262
    Abstract: In order to obtain calorie expenditure with good accuracy, the device is provided with a basal metabolic state specifying element (142) which specifies the subject's basal metabolic state from his body temperature; a correlation storing element (151) which stores respective regression formulas showing the correlation between the pulse rate and the calorie expenditure when the subject is at rest or active; a correlation correcting element (152) which correcting the stored regression formulas using the basal metabolic state; a body motion determining element (104) which determines whether or not the subject is at rest; and a regression formula selecting element (153) which selects the regression formula which should be used in accordance with the results of this determination. The subject's pulse rate is applied in the selected regression formula, and the calorie expenditure corresponding to this pulse rate is calculated by calorie expenditure calculator (162).
    Type: Grant
    Filed: January 25, 2000
    Date of Patent: September 11, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6241684
    Abstract: A device is provided, which is capable of determining the maximum oxygen uptake quantity without the restriction of a large device or requiring troublesome operations to be carried out. The device displays the upper and lower limit values for the pulse rate corresponding to an appropriate exercise intensity, and realizes in a wireless manner by means of optical communications the sending and receiving of information such as pulse wave signals to and from an information processing device which processes pulse wave information.
    Type: Grant
    Filed: February 2, 1998
    Date of Patent: June 5, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6171242
    Abstract: A non-invasive device for evaluating circulatory state parameters, and specifically, a pulsewave analysis device capable of evaluation by separating blood vessel compliance and blood vessel resistance into central and peripheral components of the arterial system is provided. Microcomputer 4 detects the waveform at a test subject's radius artery via pulsewave detector 1, and uptakes the stroke volume in the test subject which is measured by a stroke-volume measurer. Next, based on the measured stroke volume, microcomputer 4 adjusts the values of each element in a lumped five parameter model made up of an electrical circuit which models the arterial system from the center to the periphery of the body, so that the response waveform obtained when an electric signal corresponding to the pressure waveform at the proximal portion of the aorta in a test subject is provided to the electric circuit coincides with the waveform at the radius artery.
    Type: Grant
    Filed: July 24, 1997
    Date of Patent: January 9, 2001
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6162185
    Abstract: The test subject attaches pulse wave detectors 1 to his fingertips, and presses down on pressure sensor 110. As a result, CPU 4 determines the DC component of the received light signal LS, and stores this in calibration table 50 in association with the pressure level. Subsequently, CPU 4 calculates threshold values, which can be used for grading the touch sensation, based on maximum value Pmax of the pressure level and calibration table 50, and stores this result in threshold table 51. When the subject grips an object with his fingers, the blood flow volume is detected by pulse wave detector 1 as received light signal LS. CPU 4 calculates the DC component of received light signal LS, compares this result to the threshold values stored in threshold value table 51, generates touch information SJ, and displays this on LCD 108. Accordingly, in this case, pulse diagnosis can be easily performed by expressing the degree of pressure in the pulse diagnosis as touch information SJ.
    Type: Grant
    Filed: November 30, 1998
    Date of Patent: December 19, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6126595
    Abstract: The present invention relates to a device for diagnosing physiological state based on blood pulse waves detected in the body. It is the objective of the present invention to provide a device which correctly diagnoses the current physiological state based on changes in physiological state measured over a specified period of time in the past while taking into consideration the cyclical variation exhibited in physiological state.
    Type: Grant
    Filed: April 2, 1997
    Date of Patent: October 3, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6095984
    Abstract: The arrhythmia detecting apparatus of the present invention is provided with a pulse wave detecting means which non-invasively detects the pulse waveform, and an arrhythmia detecting means which detects arrhythmia by monitoring changes in the pulse waveform detected by the pulse wave detecting means. The arrhythmia detection means has a decision element which determines that arrhythmia has occurred when there is an interruption in the continuity of this change. Methods employed for investigating the continuity of change in the pulse waveform include a time domain method employing pulse wave interval values, and a frequency domain method in which frequency analysis (FFT or wavelet transformation) is carried out on the pulse waveform, with continuity studied based on the results of this analysis. As a result of this design, it is possible to detect arrhythmia by means of a simpler structure and easier operations as compared to an electrocardiogram and so on.
    Type: Grant
    Filed: April 6, 1998
    Date of Patent: August 1, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6081742
    Abstract: Devices are known for measuring a subject's respiratory rate based on the subject's pulse wave or level of electrocardiogram. When the subject is exercising or carrying out daily activities, however, an electromyogram becomes imposed on the cardiogram waveform, so that a body motion component is superimposed on the pulse wave. This leads to an incorrect measured result. To overcome this drawback, a portable portion in the form of a wristwatch worn by the subject and a personal computer comprising device main body 330 are provided. A photoelectric pulse wave sensor is attached to the base of the subject's finger, and the pulse waveform is measured. An acceleration sensor is provided to the portable portion, and employed to detect the subject's body motion spectrum. Device main body 330 performs a window function on the pulse wave, and removes the acceleration component, so that the body motion spectrum is removed from the frequency spectrum of the pulse wave.
    Type: Grant
    Filed: August 4, 1998
    Date of Patent: June 27, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6042549
    Abstract: An exercise intensity and exercise quantity measuring device is disclosed, which is capable of measuring the exercise intensity, irrespective of the type, of exercise, and measuring the exercise quantity only when the user is carrying out exercise of suitable intensity. The user first estimates his Vo.sub.2max in advance by the conventional direct method, and inputs this value into the device. The device determines upper and lower limit values of pulse rate corresponding to this Vo.sub.2max. During the time of exercise when pulse rate is between the upper and lower limit values, CPU 308 increments the accumulated time stored in RAM 309, at intervals based on a clock pulse supplied by oscillation circuit 311 and frequency dividing circuit 312. At the same time, CPU 308 compares the pulse waveform during exercise and the pulse waveform at rest, and estimates the exercise intensity.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: March 28, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 6030342
    Abstract: In order to obtain calorie expenditure with good accuracy, the device is provided with a basal metabolic state specifying element (142) which specifies the subject's basal metabolic state from his body temperature; a correlation storing element (151) which stores respective regression formulas showing the correlation between the pulse rate and the calorie expenditure when the subject is at rest or active; a correlation correcting element (152) which correcting the stored regression formulas using the basal metabolic state; a body motion determining element (104) which determines whether or not the subject is at rest; and a regression formula selecting element (153) which selects the regression formula which should be used in accordance with the results of this determination. The subject's pulse rate is applied in the selected regression formula, and the calorie expenditure corresponding to this pulse rate is calculated by calorie expenditure calculator (162).
    Type: Grant
    Filed: February 9, 1998
    Date of Patent: February 29, 2000
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 5941837
    Abstract: A health management device is provided, which enables the user himself to make a determination of the quality of his state of health, without the presence of a physician or nurse specialist. However, this device may of course be employed to receive measurement directives from, or provide notification to, a third party. Pulse sensor 4 measures the user's fingertip pulse wave. Acceleration sensor calculates an acceleration value from the user's body. These outputs are converted to digital signals at sensor interface 6. CPU1 determines whether or not the user is exercising based on the acceleration value read out from sensor interface 6. Based on this result, CPU1 takes up the user's pulse waves before and after exercise, and determines the acceleration pulse wave.
    Type: Grant
    Filed: October 14, 1997
    Date of Patent: August 24, 1999
    Assignee: Seiko Epson Corporation
    Inventors: Kazuhiko Amano, Kazuo Uebaba, Hitoshi Ishiyama
  • Patent number: 4761477
    Abstract: A 13-propylberberine salt, which is represented by the following general formula (I): ##STR1## wherein X.sup.- means HSO.sub.4 or H.sub.2 PO.sub.4, has strong inhibitory effect against secretion, good stability and high water solubility. Its effects are shown promptly after its oral administration.
    Type: Grant
    Filed: November 27, 1985
    Date of Patent: August 2, 1988
    Assignee: SS Pharmaceutical Co., Ltd.
    Inventors: Tetsuro Ikekawa, Fumitake Shimada, Jong-Chol Cyong, Kazuo Uebaba