Patents by Inventor Kazushi Nishiyama

Kazushi Nishiyama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10259366
    Abstract: A vehicle seat includes: a seat frame; a seat pad; and a planar body configured to support, from a backside, the seat pad, and including a high-elongation part more easily extensible than other planar-body part. The planar body includes a low-density region, a high-density region, and a medium-density region in which constituent yarns are placed more thickly than the low-density region, but more thinly than the high-density region, the medium-density region being provided between the low-density region and the high-density region adjacent to each other. The low-density region is placed in the high-elongation part so that the high-elongation part is easily extensible. The high-density region and the medium-density region are placed in the other planar-body part so that the other planar-body part is less easily extensible. The medium-density region in the other planar-body part is adjacent to the high-elongation part.
    Type: Grant
    Filed: January 30, 2018
    Date of Patent: April 16, 2019
    Assignees: TOYOTA BOSHOKU KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Miki Imai, Kazushi Nishiyama, Yuji Nishiyama, Junichi Munechika
  • Publication number: 20180215297
    Abstract: A vehicle seat includes: a seat frame; a seat pad; and a planar body configured to support, from a backside, the seat pad, and including a high-elongation part more easily extensible than other planar-body part. The planar body includes a low-density region, a high-density region, and a medium-density region in which constituent yarns are placed more thickly than the low-density region, but more thinly than the high-density region, the medium-density region being provided between the low-density region and the high-density region adjacent to each other. The low-density region is placed in the high-elongation part so that the high-elongation part is easily extensible. The high-density region and the medium-density region are placed in the other planar-body part so that the other planar-body part is less easily extensible. The medium-density region in the other planar-body part is adjacent to the high-elongation part.
    Type: Application
    Filed: January 30, 2018
    Publication date: August 2, 2018
    Applicants: TOYOTA BOSHOKU KABUSHIKI KAISHA, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Miki IMAI, Kazushi NISHIYAMA, Yuji NISHIYAMA, Junichi MUNECHIKA
  • Patent number: 9978408
    Abstract: A thin-film piezoelectric material element includes a piezoelectric part having a laminated structure which a lower electrode film, a piezoelectric material film and an upper electrode film are laminated sequentially, and electrode pads connected with the piezoelectric part. The thin-film piezoelectric material element has solder regulating parts formed on pad surfaces being surfaces of the electrode pads. The solder regulating parts have peripheral edge parts and crossing edge parts connected with the two outer edge parts, and formed to cross the pad surfaces. The crossing edge parts are formed in a bow like curve-shape having curved parts, being gradually distant from the shortest line as they are distant more from the outer edge parts.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: May 22, 2018
    Assignees: SAE MAGNETICS (H.K.) LTD., TOSHIBA ELECTRONIC DEVICES & STORAGE CORPORATION
    Inventors: Naoto Matono, Kazushi Nishiyama, Hirofumi Nesori, Takuma Kido
  • Publication number: 20180137883
    Abstract: A thin-film piezoelectric material element includes a piezoelectric part having a laminated structure which a lower electrode film, a piezoelectric material film and an upper electrode film are laminated sequentially, and electrode pads connected with the piezoelectric part. The thin-film piezoelectric material element has solder regulating parts formed on pad surfaces being surfaces of the electrode pads. The solder regulating parts have peripheral edge parts and crossing edge parts connected with the two outer edge parts, and formed to cross the pad surfaces. The crossing edge parts are formed in a bow like curve-shape having curved parts, being gradually distant from the shortest line as they are distant more from the outer edge parts.
    Type: Application
    Filed: November 15, 2016
    Publication date: May 17, 2018
    Inventors: Naoto MATONO, Kazushi NISHIYAMA, Hirofumi NESORI, Takuma KIDO
  • Patent number: 9450171
    Abstract: A thin film piezoelectric element of the present invention includes a substrate and a piezoelectric thin film stack formed on the substrate. The piezoelectric thin film stack includes a top electrode layer, a bottom electrode layer and a piezoelectric layer sandwiched between the top electrode layer and the bottom electrode layer, wherein the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer whose compositions have different phase structures. The present invention can obtain high piezoelectric constants, enhanced coercive field strength and good thermal stability, thereby enabling larger applied field strength without depolarization and achieving a large stroke for its applied device.
    Type: Grant
    Filed: March 29, 2013
    Date of Patent: September 20, 2016
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Wei Xiong, Panjalak Rokrakthong, Kenjiro Hata, Kazushi Nishiyama, Daisuke Iitsuka, Atsushi Iijima
  • Publication number: 20130279044
    Abstract: A thin film piezoelectric element of the present invention includes a substrate and a piezoelectric thin film stack formed on the substrate. The piezoelectric thin film stack includes a top electrode layer, a bottom electrode layer and a piezoelectric layer sandwiched between the top electrode layer and the bottom electrode layer, wherein the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer whose compositions have different phase structures. The present invention can obtain high piezoelectric constants, enhanced coercive field strength, thereby enabling larger applied field strength without depolarization and achieving a large stroke for its applied device.
    Type: Application
    Filed: April 19, 2012
    Publication date: October 24, 2013
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Wei XIONG, Panjalak Rokrakthong, Kenjiro Hata, Kazushi Nishiyama, Daisuke Iitsuka, Atsushi Iijima
  • Publication number: 20130279042
    Abstract: A thin film piezoelectric element of the present invention includes a substrate and a piezoelectric thin film stack formed on the substrate. The piezoelectric thin film stack includes a top electrode layer, a bottom electrode layer and a piezoelectric layer sandwiched between the top electrode layer and the bottom electrode layer, wherein the piezoelectric layer includes a first piezoelectric layer and a second piezoelectric layer whose compositions have different phase structures. The present invention can obtain high piezoelectric constants, enhanced coercive field strength and good thermal stability, thereby enabling larger applied field strength without depolarization and achieving a large stroke for its applied device.
    Type: Application
    Filed: March 29, 2013
    Publication date: October 24, 2013
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Wei XIONG, Panjalak ROKRAKTHONG, Kenjiro HATA, Kazushi NISHIYAMA, Daisuke IITSUKA, Atsushi IIJIMA
  • Patent number: 8470185
    Abstract: A method of manufacturing a perpendicular magnetic write head capable of precisely narrowing a side gap is provided. A tip portion having a cross sectional geometry of an inverted trapezoid is formed in an opening portion of a non-magnetic layer and thereafter, the non-magnetic layer is etched with the tip portion as a mask. Thereby, a portion adjacent to the tip portion in a writing track width direction remains and an outermost edge portion of the tip portion in that direction is located on a plane which coincides with an etching face (side face) of the non-magnetic layer. When a gap layer is formed with a vapor phase growth such as a sputtering method to cover the side face of the non-magnetic layer and thereafter a side shield layer is formed adjacently to the tip portion therethrough, a thickness of the gap layer becomes extremely thin and is reproduced precisely. Therefore, the side gap is narrowed with high precision.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: June 25, 2013
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Patent number: 8355222
    Abstract: A perpendicular magnetic write head includes: a magnetic pole; a pair of nonmagnetic side gap layers provided on both sides in a track-width direction of the magnetic pole; a nonmagnetic trailing gap layer provided on a trailing side of the magnetic pole; a magnetic shield layer so provided as to surround the magnetic pole with both of the nonmagnetic side gap layer and the nonmagnetic trailing gap layer in between; and a magnetic seed layer formed between the nonmagnetic trailing gap layer and the magnetic shield layer, and having a saturation magnetic flux density higher than that of the magnetic shield layer. The magnetic seed layer is not formed between the nonmagnetic side gap layer and the magnetic shield layer.
    Type: Grant
    Filed: June 30, 2010
    Date of Patent: January 15, 2013
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Patent number: 8353098
    Abstract: A method of manufacturing a perpendicular magnetic recording head capable of easily and accurately forming a main magnetic-pole layer having a shape suitable for concentrating a magnetic flux is provided. A nonmagnetic layer having a recessed section (a first recessed section and a second recessed section) is formed, and then an additional nonmagnetic layer is formed on an inner surface of the recessed section. Then, a magnetic layer is formed in the recessed section formed with the additional nonmagnetic layer, and then the magnetic layer is cut to form an air bearing surface, so as to form the main magnetic-pole layer.
    Type: Grant
    Filed: March 12, 2010
    Date of Patent: January 15, 2013
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Patent number: 8339737
    Abstract: A perpendicular magnetic write head capable of suppressing damage and corrosion of a magnetic pole to secure a stable writing performance is provided. A non-magnetic protruding layer protruding from a main magnetic pole layer (tip portion) toward an air bearing surface side is formed on both sides of the tip portion in a writing track width direction. The non-magnetic protruding layer is located closer to a recording medium than the tip portion during writing operation, and is more likely to be in contact with the writing medium instead of the tip portion. Since the protective film portion covering the tip portion hardly peels off (e.g., compared to the protective film portion covering the non-magnetic protruding layer), the tip portion is hardly damaged or corroded. Since the tip portion is protected physically and chemically by the non-magnetic protruding layer, deterioration of the soft magnetic characteristics of the tip portion is suppressed.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: December 25, 2012
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Patent number: 8169739
    Abstract: A perpendicular magnetic write head in which unintended erasure of information at the time of non-writing can be suppressed while keeping the capability of writing is provided. The perpendicular magnetic write head includes a magnetic pole tip portion, a first yoke portion connected to the magnetic pole tip portion, having a width larger than that of the magnetic pole tip portion, and having a recess portion in a center region thereof, and a second yoke portion embedded in the recess portion. The magnetic pole tip portion and the first yoke portion are integrally formed with a vapor deposition method, and the second yoke portion is formed with a plating method. Since the saturation flux density of the magnetic pole tip portion formed with the vapor deposition method becomes higher than that of the yoke portion, a magnetic flux intake capacity of the magnetic pole tip portion is ensured.
    Type: Grant
    Filed: September 15, 2009
    Date of Patent: May 1, 2012
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Publication number: 20120002326
    Abstract: A perpendicular magnetic write head includes: a magnetic pole; a pair of nonmagnetic side gap layers provided on both sides in a track-width direction of the magnetic pole; a nonmagnetic trailing gap layer provided on a trailing side of the magnetic pole; a magnetic shield layer so provided as to surround the magnetic pole with both of the nonmagnetic side gap layer and the nonmagnetic trailing gap layer in between; and a magnetic seed layer formed between the nonmagnetic trailing gap layer and the magnetic shield layer, and having a saturation magnetic flux density higher than that of the magnetic shield layer. The magnetic seed layer is not formed between the nonmagnetic side gap layer and the magnetic shield layer.
    Type: Application
    Filed: June 30, 2010
    Publication date: January 5, 2012
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Publication number: 20110220611
    Abstract: A method of manufacturing a perpendicular magnetic recording head capable of easily and accurately forming a main magnetic-pole layer having a shape suitable for concentrating a magnetic flux is provided. A nonmagnetic layer having a recessed section (a first recessed section and a second recessed section) is formed, and then an additional nonmagnetic layer is formed on an inner surface of the recessed section. Then, a magnetic layer is formed in the recessed section formed with the additional nonmagnetic layer, and then the magnetic layer is cut to form an air bearing surface, so as to form the main magnetic-pole layer.
    Type: Application
    Filed: March 12, 2010
    Publication date: September 15, 2011
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Publication number: 20110063754
    Abstract: A perpendicular magnetic write head in which unintended erasure of information at the time of non-writing can be suppressed while keeping the capability of writing is provided. The perpendicular magnetic write head includes a magnetic pole tip portion, a first yoke portion connected to the magnetic pole tip portion, having a width larger than that of the magnetic pole tip portion, and having a recess portion in a center region thereof, and a second yoke portion embedded in the recess portion. The magnetic pole tip portion and the first yoke portion are integrally formed with a vapor deposition method, and the second yoke portion is formed with a plating method. Since the saturation flux density of the magnetic pole tip portion formed with the vapor deposition method becomes higher than that of the yoke portion, a magnetic flux intake capacity of the magnetic pole tip portion is ensured.
    Type: Application
    Filed: September 15, 2009
    Publication date: March 17, 2011
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Publication number: 20100315741
    Abstract: A perpendicular magnetic write head capable of suppressing damage and corrosion of a magnetic pole to secure a stable writing performance is provided. A non-magnetic protruding layer protruding from a main magnetic pole layer (tip portion) toward an air bearing surface side is formed on both sides of the tip portion in a writing track width direction. The non-magnetic protruding layer is located closer to a recording medium than the tip portion during writing operation, and more likely to be in contact with the writing medium instead of the tip portion. Since the portion of the protective film covering the tip portion hardly peels off while the portion of the protective film covering the non-magnetic protruding layer is easy to peel off, the tip portion is hardly damaged or corroded. Since the tip portion is protected physically and chemically by the non-magnetic protruding layer, the deterioration of the soft magnetic characteristics of the tip portion is suppressed.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya Mino, Naoto Matono, Ikuhito Onodera, Kazushi Nishiyama, Michitoshi Tsuchiya, Kenji Sasaki
  • Publication number: 20100302681
    Abstract: A method of manufacturing a perpendicular magnetic write head capable of precisely narrowing a side gap is provided. A tip portion having a cross sectional geometry of an inverted trapezoid is formed in an opening portion of a non-magnetic layer and thereafter, the non-magnetic layer is etched with the tip portion as a mask. Thereby, a portion adjacent to the tip portion in a writing track width direction remains and an outermost edge portion of the tip portion in that direction is located on a plane which coincides with an etching face (side face) of the non-magnetic layer. When a gap layer is formed with a vapor phase growth such as a sputtering method to cover the side face of the non-magnetic layer and thereafter a side shield layer is formed adjacently to the tip portion therethrough, a thickness of the gap layer becomes extremely thin and is reproduced precisely. Therefore, the side gap is narrowed with high precision.
    Type: Application
    Filed: May 29, 2009
    Publication date: December 2, 2010
    Applicant: SAE Magnetics (H.K.) Ltd.
    Inventors: Tetsuya MINO, Naoto MATONO, Ikuhito ONODERA, Kazushi NISHIYAMA, Michitoshi TSUCHIYA, Kenji SASAKI
  • Patent number: 7380775
    Abstract: The invention is to permit a bushing main body of rubber elastomer to be adhered to a bar member while retaining a necessary contact pressure for adhering and after adhering, to permit a further compressive force to be imparted. The bushing main body (10) having a bore (11), through which the bar member (B) passes, and a bracket (20) holding the former are longitudinally split into two, respectively, the resulting split rubber bodies (10a)(10b) are vulcanization bonded to inner peripheral surfaces of the resulting half bracket members (20a)(20b). The inside diameter (D1) of both split rubber bodies as molded is made smaller than the outside diameter (D2) of the bar member, and inner peripheral surfaces (11a)(11b) at the bore are formed to be eccentric on mutually opposite sides.
    Type: Grant
    Filed: December 13, 2004
    Date of Patent: June 3, 2008
    Assignee: Toyo Tire Rubber Co., Ltd.
    Inventors: Satoshi Niwa, Kazushi Nishiyama, Hiroyuki Masuda, Yasuhiro Teranishi
  • Publication number: 20060125165
    Abstract: The invention is to permit a bushing main body of rubber elastomer to be adhered to a bar member while retaining a necessary contact pressure for adhering and after adhering, to permit a further compressive force to be imparted. The bushing main body (10) having a bore (11), through which the bar member (B) passes, and a bracket (20) holding the former are longitudinally split into two, respectively, the resulting split rubber bodies (10a)(10b) are vulcanization bonded to inner peripheral surfaces of the resulting half bracket members (20a)(20b). The inside diameter (D1) of both split rubber bodies as molded is made smaller than the outside diameter (D2) of the bar member, and inner peripheral surfaces (11a)(11b) at the bore are formed to be eccentric on mutually opposite sides.
    Type: Application
    Filed: December 13, 2004
    Publication date: June 15, 2006
    Inventors: Satoshi Niwa, Kazushi Nishiyama, Hiroyuki Masuda, Yasuhiro Teranishi