Patents by Inventor Kazushi Shimamoto

Kazushi Shimamoto has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11841721
    Abstract: The present disclosure realizes a configuration capable of setting and changing the value of a voltage that is output from a voltage regulator, while suppressing an increase in the size of an apparatus and keeping the apparatus from being complex. A control unit of a voltage regulator operates to switch a state of each port to either a first state or a second state. An input circuit unit applies a voltage corresponding to the combination of the first states at the ports to the base of a transistor. Electricity flows through the transistor when at least one of the ports is in the first state. A switch is turned on when electricity flows through the transistor. A Zener diode sets an output voltage applied to a second conductive path to a voltage corresponding to a voltage applied to the base of the transistor.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: December 12, 2023
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa
  • Patent number: 11709514
    Abstract: A voltage regulator is provided wherein electricity flows through a second transistor in an operating state in which a control unit) applies an operating voltage to a base of the second transistor. A Zener diode sets, in the operating state, a voltage of a second conductive path to a voltage corresponding to a voltage across the Zener diode. A current corresponding to an addition value obtained by adding a value of a current flowing through a second resistor portion in the operating state, a value of a current flowing through a third resistor portion in the operating state, and a value of a current flowing through the Zener diode in the operating state flows through a ground-side resistor portion. A control unit stops the output of the operating voltage when a voltage of the second conductive path is lower than or equal to a threshold value.
    Type: Grant
    Filed: April 27, 2020
    Date of Patent: July 25, 2023
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa
  • Patent number: 11467190
    Abstract: In a voltage detection circuit, if a driving signal is provided from a control circuit to a drive target circuit that is one of a plurality of individual detection circuits, and a non-driving signal is provided from the control circuit to the other non-target circuits, switch portions of the non-target circuits are turned off to prevent a current from flowing through first transistors and second transistors of the non-target circuits, whereby generation of the output voltages in the non-target circuits is stopped, and a switch portion of the drive target circuit is turned on so as to allow a current to flow through a first transistor and a second transistor of the drive target circuit, whereby a voltage according to a voltage across both ends of an electricity storage cell corresponding to the drive target circuit is applied to an output conductive path.
    Type: Grant
    Filed: April 5, 2019
    Date of Patent: October 11, 2022
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa
  • Publication number: 20220229454
    Abstract: A voltage regulator is provided wherein electricity flows through a second transistor in an operating state in which a control unit) applies an operating voltage to a base of the second transistor. A Zener diode sets, in the operating state, a voltage of a second conductive path to a voltage corresponding to a voltage across the Zener diode. A current corresponding to an addition value obtained by adding a value of a current flowing through a second resistor portion in the operating state, a value of a current flowing through a third resistor portion in the operating state, and a value of a current flowing through the Zener diode in the operating state flows through a ground-side resistor portion. A control unit stops the output of the operating voltage when a voltage of the second conductive path is lower than or equal to a threshold value.
    Type: Application
    Filed: April 27, 2020
    Publication date: July 21, 2022
    Applicants: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa
  • Publication number: 20220221887
    Abstract: The present disclosure realizes a configuration capable of setting and changing the value of a voltage that is output from a voltage regulator, while suppressing an increase in the size of an apparatus and keeping the apparatus from being complex. A control unit of a voltage regulator operates to switch a state of each port to either a first state or a second state. An input circuit unit applies a voltage corresponding to the combination of the first states at the ports to the base of a transistor. Electricity flows through the transistor when at least one of the ports is in the first state. A switch is turned on when electricity flows through the transistor. A Zener diode sets an output voltage applied to a second conductive path to a voltage corresponding to a voltage applied to the base of the transistor.
    Type: Application
    Filed: April 27, 2020
    Publication date: July 14, 2022
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa
  • Patent number: 11198405
    Abstract: A configuration with which, even if the supply of power from a power supply portion ceases, the power from another power supply source can be instantly supplied to a power supply target is more easily achieved. In a backup circuit, a control unit causes a second voltage conversion portion to perform a voltage conversion operation in response to satisfaction of a predetermined first backup condition, and a power supply portion-side conductive path and an electricity storage portion-side conductive path are electrically connected to each other via a resistive portion when the control unit is causing the second voltage conversion portion to perform the voltage conversion operation. Furthermore, the control unit causes the first voltage conversion portion to perform a second operation in response to a predetermined second backup condition being satisfied when the control unit is causing the second voltage conversion portion to perform the voltage conversion operation.
    Type: Grant
    Filed: April 9, 2019
    Date of Patent: December 14, 2021
    Assignees: AutoNetworks Technologies, Ltd., Sumitomo Wiring Systems, Ltd., Sumitomo Electric Industries, Ltd.
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa
  • Publication number: 20210229610
    Abstract: A configuration with which, even if the supply of power from a power supply portion ceases, the power from another power supply source can be instantly supplied to a power supply target is more easily achieved. In a backup circuit, a control unit causes a second voltage conversion portion to perform a voltage conversion operation in response to satisfaction of a predetermined first backup condition, and a power supply portion-side conductive path and an electricity storage portion-side conductive path are electrically connected to each other via a resistive portion when the control unit is causing the second voltage conversion portion to perform the voltage conversion operation. Furthermore, the control unit causes the first voltage conversion portion to perform a second operation in response to a predetermined second backup condition being satisfied when the control unit is causing the second voltage conversion portion to perform the voltage conversion operation.
    Type: Application
    Filed: April 9, 2019
    Publication date: July 29, 2021
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa
  • Publication number: 20210109133
    Abstract: In a voltage detection circuit, if a driving signal is provided from a control circuit to a drive target circuit that is one of a plurality of individual detection circuits, and a non-driving signal is provided from the control circuit to the other non-target circuits, switch portions of the non-target circuits are turned off to prevent a current from flowing through first transistors and second transistors of the non-target circuits, whereby generation of the output voltages in the non-target circuits is stopped, and a switch portion of the drive target circuit is turned on so as to allow a current to flow through a first transistor and a second transistor of the drive target circuit, whereby a voltage according to a voltage across both ends of an electricity storage cell corresponding to the drive target circuit is applied to an output conductive path.
    Type: Application
    Filed: April 5, 2019
    Publication date: April 15, 2021
    Inventors: Kazushi Shimamoto, Yuuki Sugisawa