Patents by Inventor Kazushige Ishida

Kazushige Ishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12176118
    Abstract: There is provided an organic iodine trapping apparatus that can efficiently trap an organic iodine without using complicated or large equipment. An organic iodine trapping apparatus 30 is an apparatus that traps an organic iodine, including: a trapping vessel 1 through which gas containing an organic iodine is passed; an organic iodine remover 2 (Example: trihexyl (tetradecyl) phosphonium chloride, or the like) that is disposed in or injected into the trapping vessel 1 and decomposes the organic iodine; and a trapping material 3 that is disposed in or injected into the trapping vessel 1 and traps iodine ions generated by decomposition of the organic iodine, in which the trapping material 3 is a metal (Example: silver or the like) or a metal compound (Example: silver chloride, silver oxide, or the like).
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: December 24, 2024
    Assignee: HITACHI-GE NUCLEAR ENERGY, LTD.
    Inventors: Sohei Fukui, Kazushige Ishida, Kazuo Tominaga, Motoi Tanaka, Tomoharu Hashimoto
  • Publication number: 20240071640
    Abstract: Provided is a chemical decontamination method that shortens the decomposition time of a reduction decontamination agent. An oxidization decontamination, a decomposition of an oxidization decontamination agent, and reduction decontamination using an oxalic acid aqueous solution are performed on a target piping of a BWR plant. After that, the oxalic acid is decomposed (S7). That is, a part of the oxalic acid is decomposed by irradiating the oxalic acid aqueous solution with ultraviolet rays upstream of a decomposition device (S8), and Fe3+ in the aqueous solution is converted to Fe2+. Hydrogen peroxide is supplied to the decomposition device (S9). In the decomposition device, the oxalic acid is decomposed by a catalyst and hydrogen peroxide, Fe2+ and hydrogen peroxide react to produce Fe3+ and OH*, and the oxalic acid is decomposed by OH*. A corrosion potential of the aqueous solution flowing out from the decomposition device is measured (S11).
    Type: Application
    Filed: October 29, 2021
    Publication date: February 29, 2024
    Inventors: Tsuyoshi ITOU, Kazushige ISHIDA, Hideyuki HOSOKAWA, Shintaro YANAGISAWA, Takashi OOHIRA
  • Publication number: 20220139587
    Abstract: To provide an iodine trapping apparatus capable of trapping organic iodine in a wide temperature range with high efficiency. The iodine trapping apparatus includes a first trapping agent 2 capable of trapping organic iodine in a gas in a nuclear power structure main body. The first trapping agent 2 contains a generating and trapping component which generates an iodide ion (I?) from organic iodine (RI) and traps the generated iodide ion, and a generating component which is different from the generating and trapping component, generates an iodide ion from the organic iodine at least at 100° C. to 130° C., and traps the generated iodide ion in the generating and trapping component.
    Type: Application
    Filed: October 27, 2021
    Publication date: May 5, 2022
    Inventors: Sohei FUKUI, Kazushige ISHIDA, Tsuyoshi ITO, Kazuo TOMINAGA, Motoi TANAKA, Masaaki TANAKA
  • Patent number: 11232878
    Abstract: A chemical decontamination method includes a dissolution step in which a radioactive insoluble substance containing a metal oxide, the radioactive insoluble substance being adhered to a decontamination object including carbon steel, is dissolved in a decontamination solution and a metal-ion removal step in which the decontamination solution containing the metal ion, the decontamination solution being produced in the dissolution step, is brought into contact with a cation-exchange resin in order to remove the metal ion, the dissolution step including a reductive dissolution step conducted using a decontamination solution containing formic acid, ascorbic acid and/or erythorbic acid, and a corrosion inhibitor.
    Type: Grant
    Filed: March 1, 2018
    Date of Patent: January 25, 2022
    Assignees: KURITA WATER INDUSTRIES LTD., HITACHI-GE NUCLEAR ENERGY, LTD.
    Inventors: Masahiko Kazama, Naobumi Tsubokawa, Kazushige Ishida, Satoshi Ouchi, Junji Iwasa
  • Publication number: 20210316248
    Abstract: There is provided an organic iodine trapping apparatus that can efficiently trap an organic iodine without using complicated or large equipment. An organic iodine trapping apparatus 30 is an apparatus that traps an organic iodine, including: a trapping vessel 1 through which gas containing an organic iodine is passed; an organic iodine remover 2 (Example: trihexyl (tetradecyl) phosphonium chloride, or the like) that is disposed in or injected into the trapping vessel 1 and decomposes the organic iodine; and a trapping material 3 that is disposed in or injected into the trapping vessel 1 and traps iodine ions generated by decomposition of the organic iodine, in which the trapping material 3 is a metal (Example: silver or the like) or a metal compound (Example: silver chloride, silver oxide, or the like).
    Type: Application
    Filed: April 6, 2021
    Publication date: October 14, 2021
    Inventors: Sohei FUKUI, Kazushige ISHIDA, Kazuo TOMINAGA, Motoi TANAKA, Tomoharu HASHIMOTO
  • Publication number: 20200312471
    Abstract: To provide a corrosion mitigation method for carbon steel pipe that can further reduce corrosion of the carbon steel pipe. In a BWR plant, oxygen is injected from an oxygen injection device 30 into a clean up system pipe 18 which is constituted by a Cr-containing carbon steel pipe containing Cr in a range of larger than 0.052 wt % and less than 0.4 wt % and being in communication with a RPV 3, and reactor water of 150° C. having a dissolved oxygen concentration of 30 ?g/L is generated. The reactor water is brought into contact with an inner surface of the clean up system pipe 18 to perform an oxidizing treatment on the inner surface, and an oxide film containing Cr is formed on the inner surface.
    Type: Application
    Filed: March 3, 2020
    Publication date: October 1, 2020
    Inventors: Kazushige ISHIDA, Masahiko TACHIBANA, Mayu SASAKI, Ryosuke SHIMIZU
  • Publication number: 20200055758
    Abstract: The present disclosure provides a method for relieving a corrosive environment of a boiling water reactor, the method including a step of injecting hydrogen and a noble metal compound into water to be replenished into the reactor pressure vessel during a period of a generating operation of a boiling water nuclear power plant including the reactor pressure vessel. In the method, the hydrogen is injected into water to be supplied into the reactor pressure vessel, and the noble metal compound is injected into water in a line of the boiling water nuclear power plant in which a concentration of oxygen or hydrogen peroxide is stoichiometrically higher than the concentration of hydrogen at which hydrogen undergoes a chemical reaction to turn to water.
    Type: Application
    Filed: September 20, 2019
    Publication date: February 20, 2020
    Inventors: Kazushige ISHIDA, Youichi WADA, Masahiko TACHIBANA, Nobuyuki OOTA, Ryosuke SHIMIZU, Mayu SASAKI
  • Publication number: 20200013519
    Abstract: A chemical decontamination method includes a dissolution step in which a radioactive insoluble substance containing a metal oxide, the radioactive insoluble substance being adhered to a decontamination object including carbon steel, is dissolved in a decontamination solution and a metal-ion removal step in which the decontamination solution containing the metal ion, the decontamination solution being produced in the dissolution step, is brought into contact with a cation-exchange resin in order to remove the metal ion, the dissolution step including a reductive dissolution step conducted using a decontamination solution containing formic acid, ascorbic acid and/or erythorbic acid, and a corrosion inhibitor.
    Type: Application
    Filed: March 1, 2018
    Publication date: January 9, 2020
    Inventors: Masahiko KAZAMA, Naobumi TSUBOKAWA, Kazushige ISHIDA, Satoshi OUCHI, Junji IWASA
  • Patent number: 10504628
    Abstract: An aqueous solution of alkali hexahydroxo platinate is produced. As a alkali hexahydroxo platinate, sodium hexahydroxoplatinate or potassium hexahydroxoplatinate is used. The aqueous solution of alkali hexahydroxo platinate is passed through a hydrogen form cation exchange resin layer in a cation exchange resin tower. The aqueous solution of alkali hexahydroxo platinate makes contact with the hydrogen form cation exchange resin of the hydrogen form cation exchange resin layer, thus a suspension of hexahydroxo platinic is generated. If gamma rays are irradiated to the suspension, a platinum oxide colloidal solution in which colloidal particles including a platinum dioxide, a platinum monoxide, and a platinum hydroxide exist is generated. In a platinum oxide colloidal solution, the content of impurities is little and a noble metal compound is dispersed stably in water.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: December 10, 2019
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Kazushige Ishida, Masahiko Tachibana, Yoichi Wada, Nobuyuki Ota
  • Patent number: 10457583
    Abstract: The present disclosure provides a method for relieving a corrosive environment of a boiling water reactor, the method including a step of injecting hydrogen and a noble metal compound into water to be replenished into the reactor pressure vessel during a period of a generating operation of a boiling water nuclear power plant including the reactor pressure vessel. In the method, the hydrogen is injected into water to be supplied into the reactor pressure vessel, and the noble metal compound is injected into water in a line of the boiling water nuclear power plant in which a concentration of oxygen or hydrogen peroxide is stoichiometrically higher than the concentration of hydrogen at which hydrogen undergoes a chemical reaction to turn to water.
    Type: Grant
    Filed: January 30, 2017
    Date of Patent: October 29, 2019
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Kazushige Ishida, Youichi Wada, Masahiko Tachibana, Nobuyuki Oota, Ryosuke Shimizu, Mayu Sasaki
  • Patent number: 10083769
    Abstract: In an electrodeposition treatment of an iron-group metal ion-containing liquid, without being influenced by the properties of the iron-group metal ion-containing liquid, iron-group metal ions are efficiently removed from the liquid by precipitation. An anode chamber 2A provided with an anode 2 and a cathode chamber 3A provided with a cathode 3 are separated from each other by a cation exchange membrane 5, an iron-group metal ion-containing liquid is charged into the anode chamber 2A, a cathode liquid is charged into the cathode chamber 3A, and by applying the voltage between the anode 2 and the cathode 3, iron-group metal ions in the liquid in the anode chamber 2A are moved into the liquid in the cathode chamber 3A through the cation exchange membrane 5, so that an iron-group metal is precipitated on the cathode 3.
    Type: Grant
    Filed: October 20, 2014
    Date of Patent: September 25, 2018
    Assignees: KURITA WATER INDUSTRIES LTD., HITACHI-GE NUCLEAR ENERGY, LTD.
    Inventors: Shingo Miyamoto, Mamoru Iwasaki, Mami Hirose, Motohiro Aizawa, Nobuyuki Ota, Takako Sumiya, Kazushige Ishida
  • Publication number: 20180080115
    Abstract: There is provided an adhesion restraint method of a radionuclide to a carbon steel material of an atomic energy plant, in which an adhesion restraint effect of the radionuclide to the carbon steel material can continue for a longer term. A film forming apparatus is connected to a carbon steel purification system pipe of a BWR plant. A nickel formate aqueous solution and hydrazine are injected into a circulation pipe of the film forming apparatus. An aqueous solution including nickel formate and hydrazine is guided into a purification system pipe subjected to chemical decontamination, and a nickel metal film is formed on an inner surface of the pipe. A platinum ion aqueous solution and hydrazine are injected into the circulation pipe, and an aqueous solution including a platinum ion and hydrazine is supplied to the purification system pipe so as to adhere platinum to the surface of a nickel metal film. The film forming apparatus is detached from the purification system pipe, and the BWR plant is started.
    Type: Application
    Filed: August 7, 2017
    Publication date: March 22, 2018
    Inventors: Tsuyoshi ITOU, Hideyuki HOSOKAWA, Nobuyuki OOTA, Satoshi OOUCHI, Shintarou YANAGISAWA, Mizuho TSUYUKI, Makoto NAGASE, Kazushige ISHIDA, Toru KAWASAKI
  • Publication number: 20180079663
    Abstract: A method in which an anode chamber and a cathode chamber are separated by a cation exchange membrane, an acid solution containing metal ions is introduced into the anode chamber, a cathode solution is introduced into the cathode chamber, and a current is applied across the anode and the cathode, whereby the metal ions in the solution in the anode chamber pass through the cation exchange membrane, move into the cathode solution, and precipitate as metal onto the cathode, wherein there are minimal instances where electrodeposition is impossible or the electrodeposition rate decreases. Pre-adding a salt of the acid contained in the acid solution makes it possible to suppress concentration-diffusion of the acid from the acid solution. Adding a salt of the acid into the cathode chamber makes it possible to reduce the impressed voltage, reduce the amount of hydrogen generated on the cathode, and reduce the amount of power.
    Type: Application
    Filed: March 30, 2016
    Publication date: March 22, 2018
    Inventors: Shingo MIYAMOTO, Mami HIROSE, Mamoru IWASAKI, Hideyuki KOMORI, Motohiro AIZAWA, Nobuyuki OTA, Takako SUMIYA, Kazushige ISHIDA
  • Publication number: 20170287573
    Abstract: The present disclosure provides a method for relieving a corrosive environment of a boiling water reactor, the method including a step of injecting hydrogen and a noble metal compound into water to be replenished into the reactor pressure vessel during a period of a generating operation of a boiling water nuclear power plant including the reactor pressure vessel. In the method, the hydrogen is injected into water to be supplied into the reactor pressure vessel, and the noble metal compound is injected into water in a line of the boiling water nuclear power plant in which a concentration of oxygen or hydrogen peroxide is stoichiometrically higher than the concentration of hydrogen at which hydrogen undergoes a chemical reaction to turn to water.
    Type: Application
    Filed: January 30, 2017
    Publication date: October 5, 2017
    Inventors: Kazushige ISHIDA, Youichi WADA, Masahiko TACHIBANA, Nobuyuki OOTA, Ryosuke SHIMIZU, Mayu SASAKI
  • Publication number: 20170236604
    Abstract: An aqueous solution of alkali hexahydroxo platinate is produced. As a alkali hexahydroxo platinate, sodium hexahydroxoplatinate or potassium hexahydroxoplatinate is used. The aqueous solution of alkali hexahydroxo platinate is passed through a hydrogen form cation exchange resin layer in a cation exchange resin tower. The aqueous solution of alkali hexahydroxo platinate makes contact with the hydrogen form cation exchange resin of the hydrogen form cation exchange resin layer, thus a suspension of hexahydroxo platinic is generated. If gamma rays are irradiated to the suspension, a platinum oxide colloidal solution in which colloidal particles including a platinum dioxide, a platinum monoxide, and a platinum hydroxide exist is generated. In a platinum oxide colloidal solution, the content of impurities is little and a noble metal compound is dispersed stably in water.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventors: Kazushige ISHIDA, Masahiko TACHIBANA, Yoichi WADA, Nobuyuki OTA
  • Publication number: 20160247589
    Abstract: In an electrodeposition treatment of an iron-group metal ion-containing liquid, without being influenced by the properties of the iron-group metal ion-containing liquid, iron-group metal ions are efficiently removed from the liquid by precipitation. An anode chamber 2A provided with an anode 2 and a cathode chamber 3A provided with a cathode 3 are separated from each other by a cation exchange membrane 5, an iron-group metal ion-containing liquid is charged into the anode chamber 2A, a cathode liquid is charged into the cathode chamber 3A, and by applying the voltage between the anode 2 and the cathode 3, iron-group metal ions in the liquid in the anode chamber 2A are moved into the liquid in the cathode chamber 3A through the cation exchange membrane 5, so that an iron-group metal is precipitated on the cathode 3.
    Type: Application
    Filed: October 20, 2014
    Publication date: August 25, 2016
    Inventors: Shingo MIYAMOTO, Mamoru IWASAKI, Mami HIROSE, Motohiro AIZAWA, Nobuyuki OTA, Takako SUMIYA, Kazushige ISHIDA
  • Patent number: 9336913
    Abstract: Disclosed is a method for treating a radioactive organic waste, the radioactive organic waste including a cation exchange resin adsorbing radionuclide ions, the method including the step of bringing the radioactive organic waste into contact with an organic acid salt aqueous solution containing an organic acid salt and whereby desorbing the radionuclide ions from the cation exchange resin, in which the organic acid salt contained in the organic acid salt aqueous solution includes a cation that is more readily adsorbable by the cation exchange resin than hydrogen ion is. This enables reduction in concentration of a radioactive substance in the radioactive organic waste and reduction in amount of a high-dose radioactive waste.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: May 10, 2016
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Takako Sumiya, Kenji Noshita, Kazushige Ishida, Nozomu Nagayama, Mamoru Kamoshida, Atsushi Yukita
  • Patent number: 9299463
    Abstract: A noble metal injection apparatus is connected to a piping of a nuclear plant at the time of stop of the nuclear plant before start of the nuclear plant. In chemical decontamination, oxidation decontamination agent decomposition, and reduction decontamination on an inner surface of the pipe system are executed. After reduction decontamination, a part of an oxalic acid included in a reduction decontamination solution is decomposed and platinum is injected into the reduction decontamination solution of pH 3.5 or higher. When the platinum concentration becomes a preset concentration, a reduction agent is injected and the reduction decontamination solution including the platinum and reduction agent is brought into contact with the inner surface of the piping. The platinum is deposited on the inner surface of the piping. The injection of the platinum and reduction agent is stopped and the platinum and reduction agent are decomposed.
    Type: Grant
    Filed: November 16, 2012
    Date of Patent: March 29, 2016
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Tsuyoshi Ito, Hideyuki Hosokawa, Makoto Nagase, Yoichi Wada, Kazushige Ishida, Motohiro Aizawa
  • Patent number: 9230699
    Abstract: A circulation pipe of a chemical decontamination apparatus including a malonic acid injection apparatus and an oxalic acid injection apparatus is connected to a purification system pipe, which is made of carbon steel, of a boiling water nuclear power plant. A malonic acid aqueous solution is injected from the malonic acid injection apparatus into the circulation pipe. An oxalic acid aqueous solution is injected from the oxalic acid injection apparatus into the circulation pipe. A reduction decontaminating solution including a malonic acid of 5200 ppm and an oxalic acid within a range of 50 to 400 ppm is supplied into the purification system pipe through the circulation pipe. Reduction decontamination for an inner surface of the purification system pipe is executed. After the reduction decontamination for the purification system pipe finishes, the malonic acid and oxalic acid included in the solution are decomposed and furthermore, the solution is purified.
    Type: Grant
    Filed: August 4, 2014
    Date of Patent: January 5, 2016
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Kazushige Ishida, Hideyuki Hosokawa, Motohiro Aizawa
  • Publication number: 20150073198
    Abstract: A circulation pipe of a chemical decontamination apparatus including a malonic acid injection apparatus and an oxalic acid injection apparatus is connected to a purification system pipe, which is made of carbon steel, of a boiling water nuclear power plant. A malonic acid aqueous solution is injected from the malonic acid injection apparatus into the circulation pipe. An oxalic acid aqueous solution is injected from the oxalic acid injection apparatus into the circulation pipe. A reduction decontaminating solution including a malonic acid of 5200 ppm and an oxalic acid within a range of 50 to 400 ppm is supplied into the purification system pipe through the circulation pipe. Reduction decontamination for an inner surface of the purification system pipe is executed. After the reduction decontamination for the purification system pipe finishes, the malonic acid and oxalic acid included in the solution are decomposed and furthermore, the solution is purified.
    Type: Application
    Filed: August 4, 2014
    Publication date: March 12, 2015
    Inventors: Kazushige ISHIDA, Hideyuki HOSOKAWA, Motohiro AIZAWA