Patents by Inventor Kazutaka Ono
Kazutaka Ono has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20210032155Abstract: A supporting glass substrate has a ratio of a Young's modulus (GPa) to a density (g/cm3) that is 37.0 (GPa·cm3/g) or more and the ratio has a value larger than a ratio calculation value, the ratio calculation value being a ratio of a Young's modulus (GPa) calculated from a composition to a density (g/cm3). The ratio calculation value is represented by the following expression: ?=2·?{(Vi·Gi)/Mi·Xi}, where, in the expression, Vi is a filling parameter of a metal oxide contained in the supporting glass substrate, Gi is a dissociation energy of a metal oxide contained in the supporting glass substrate. Mi is a molecular weight of a metal oxide contained in the supporting glass substrate, and Xi is a molar ratio of a metal oxide contained in the supporting glass substrate.Type: ApplicationFiled: July 29, 2020Publication date: February 4, 2021Applicant: AGC Inc.Inventors: Seiji INABA, Yasunari SAITO, Kiyoshi TAMAI, Kazutaka ONO, Yuha KOBAYASHI
-
Publication number: 20210024403Abstract: An alkali-free glass has a strain point of 650° C. or more, an average coefficient of thermal expansion at 50 to 350° C. of from 30×10?7 to 45×10?7/° C., and a temperature T2 at which a glass viscosity reaches 102 dPa·s of from 1,500 to 1,800° C. The alkali-free glass contains, as represented by mol % based on oxides, SiO2: from 62 to 70%, Al2O3: from 9 to 16% B2O3: from 0 to 12%, MgO: from 3 to 10%, CaO: from 4 to 12%, SrO: from 0 to 6%, and Fe2O3: from 0.001 to 0.04%, provided that MgO+CaO+SrO+BaO is from 12 to 25%. The alkali-free glass has a ?-OH value of from 0.35 to 0.85/mm.Type: ApplicationFiled: October 14, 2020Publication date: January 28, 2021Applicant: AGC Inc.Inventors: Hirofumi TOKUNAGA, Kazutaka ONO, Motoyuki HIROSE
-
Publication number: 20210024402Abstract: To provide a glass plate having a high Young's modulus and a high devitrification viscosity. A glass includes, in mol % based on oxides: SiO2 of 30.0 to 50.0%; B2O3 of 10.0 to 30.0%; Al2O3of 10.0 to 30.0%; Y2O3 of 3.0 to 17.0%; and Gd2O3 of 3.5 to 17.0%, in which (Gd2O3+Y2O3) is from 16.0 to 22.0%, and (Gd2O3/Y2O3) is from 0.15 to 7.0.Type: ApplicationFiled: August 28, 2020Publication date: January 28, 2021Applicant: AGC Inc.Inventors: Seiji INABA, Kazutaka ONO
-
Publication number: 20210013598Abstract: Provided is a glass substrate with which it is possible to reduce dielectric loss in high-frequency signals, and which also has excellent thermal shock resistance. This invention satisfies the relation {Young's modulus (GPa)×average thermal expansion coefficient (ppm/° C.) at 50-350° C}?300 (GPa·ppm/° C.), wherein the relative dielectric constant at 20° C. and 35 GHz does not exceed 10, and the dielectric dissipation factor at 20° C. and 35 GHz does not exceed 0.006.Type: ApplicationFiled: September 16, 2020Publication date: January 14, 2021Applicant: AGC Inc.Inventors: Shuhei NOMURA, Kazutaka ONO
-
Patent number: 10882778Abstract: A glass substrate includes, as a glass matrix composition as represented by mole percentage based on oxides, SiO2: 55%-75%, Al2O3: 2%-15%, MgO: 0%-10%, CaO: 0%-10%, SrO: 0%-10%, BaO: 0%-15%, ZrO2: 0%-5%, Na2O: 0%-20%, K2O: 5%-30%, and Li2O: 0%-5.0%. The glass substrate has a total content of alkali metal oxides, as represented by mole percentage based on oxides, of 10%-30%, a value obtained by dividing the total content of alkali metal oxides by the content of SiO2 of 0.50 or smaller, a value obtained by dividing the content of Na2O by a value obtained by subtracting the content of Al2O3 from a total content of Na2O and K2O of 0.90 or smaller, and an average coefficient of thermal expansion ?1 at 50° C.-350° C. of 11 ppm/° C.-16 ppm/° C.Type: GrantFiled: June 26, 2018Date of Patent: January 5, 2021Assignee: AGC Inc.Inventors: Shigeki Sawamura, Kazutaka Ono, Yu Hanawa
-
Publication number: 20200407267Abstract: The present invention relates to a substrate having a dielectric loss tangent (A) as measured at 20° C. and 10 GHz of 0.1 or less, a dielectric loss tangent (B) as measured at 20° C. and 35 GHz of 0.1 or less, and a ratio [a dielectric loss tangent (C) as measured at an arbitrary temperature in a range of ?40 to 150° C. and at 10 GHz]/[the dielectric loss tangent (A)] of 0.90-1.10, or a substrate having a relative permittivity (a) as measured at 20° C. and 10 GHz of 4 or more and 10 or less, a relative permittivity (b) as measured at 20° C. and 35 GHz of 4 or more and 10 or less, and a ratio [a relative permittivity (c) as measured at an arbitrary temperature in a range of ?40 to 150° C. and at 10 GHz]/[the relative permittivity (a)] of 0.993-1.007.Type: ApplicationFiled: September 16, 2020Publication date: December 31, 2020Applicant: AGC Inc.Inventors: Shuhei NOMURA, Kazutaka ONO
-
Publication number: 20200407264Abstract: A glass has a density of 2.60 g/cm3 or lower, a Young's modulus of 88 GPa or more, a strain point of 650 to 720° C., a temperature T4 at which a glass viscosity reaches 104 dPa·s of 1,320° C. or lower, a glass surface devitrification temperature (Tc) of T4+20° C. or lower, and an average coefficient of thermal expansion of 30×10?7 to 43×10?7/° C. at 50 to 350° C. The glass contains, as represented by mol % based on oxides, 50 to 80% of SiO2, 8 to 20% of Al2O3, 0 to 0.5% in total of at least one kind of alkali metal oxide selected from the group consisting of Li2O, Na2O and K2O, and 0 to 1% of P2O5.Type: ApplicationFiled: September 10, 2020Publication date: December 31, 2020Applicant: AGC INC.Inventors: Hirofumi TOKUNAGA, Kazutaka ONO
-
Publication number: 20200407265Abstract: An alkali free glass has an average coefficient of thermal expansion at 50 to 350° C. of 30×10?7 to 43×10?7/° C., a Young's modulus of 88 GPa or more, a strain point of 650 to 725° C., a temperature T4 at which a viscosity reaches 104 dPa·s of 1,290° C. or lower, a glass surface devitrification temperature (Tc) of T4+20° C. or lower, and a temperature T2 at which the viscosity reaches 102 dPa·s of 1,680° C. or lower. The alkali free glass contains, as represented by mol % based on oxides, 62 to 67% of SiO2, 12.5 to 16.5% of Al2O3, 0 to 3% of B2O3, 8 to 13% of MgO, 6 to 12% of CaO, 0.5 to 4% of SrO, and 0 to 0.5% of BaO. MgO+CaO+SrO+BaO is 18 to 22%, and MgO/CaO is 0.8 to 1.33.Type: ApplicationFiled: September 11, 2020Publication date: December 31, 2020Applicant: AGC Inc.Inventors: Hirofumi TOKUNAGA, Kazutaka ONO
-
Patent number: 10822264Abstract: The present invention relates to an alkali-free glass substrate, in which when two arbitrary sites in one main surface thereof are selected, an absolute value of a difference between a thermal shrinkage ratio in an arbitrary direction at one site and a thermal shrinkage ratio in a direction orthogonal to the arbitrary direction at another site is 2 ppm or less, provided that the thermal shrinkage ratio is calculated by measuring a deformation amount in a measuring direction of the glass substrate between before and after a heat treatment of raising a temperature from normal temperature to 600° C. at 100° C./hour, holding the glass substrate at 600° C. for 80 minutes, and lowering the temperature from 600° C. to normal temperature at 100° C./hour.Type: GrantFiled: March 14, 2017Date of Patent: November 3, 2020Assignee: AGC INC.Inventors: Tetsushi Takiguchi, Shunji Inoue, Kazutaka Ono, Hirofumi Tokunaga, Jun Akiyama, Yasumasa Kato, Taketoshi Taniguchi
-
Patent number: 10759691Abstract: The present invention provides a glass substrate in which in a heat treatment step of sticking a silicon substrate and a glass substrate to each other, an alkali ion is hardly diffused into the silicon substrate, and a residual strain generated in the silicon substrate is small. A glass substrate of the present invention has: an average thermal expansion coefficient ?50/100 at 50° C. to 100° C. of 2.70 ppm/° C. to 3.20 ppm/° C.; an average thermal expansion coefficient ?200/300 at 200° C. to 300° C. of 3.45 ppm/° C. to 3.95 ppm/° C.; a value ?200/300/?50/100 obtained by dividing the average thermal expansion coefficient ?200/300 at 200° C. to 300° C. by the average thermal expansion coefficient ?50/100 at 50° C. to 100° C. of 1.20 to 1.30; and a content of an alkali metal oxide being 0% to 0.1% as expressed in terms of a molar percentage based on oxides.Type: GrantFiled: August 2, 2017Date of Patent: September 1, 2020Assignee: AGC Inc.Inventors: Shuhei Nomura, Kazutaka Ono
-
Patent number: 10730786Abstract: The present invention relates to an alkali-free glass and a method for producing the same. More specifically, the present invention relates to an alkali-free glass suitable as a glass for substrates of various displays such as liquid crystal display, and a method for producing the same. According to the present invention, an alkali-free glass suitable as a glass for display substrates, in which inclusion of bubbles is greatly reduced by virtue of containing a refining agent and suppressing the stirring reboil, is obtained.Type: GrantFiled: April 24, 2019Date of Patent: August 4, 2020Assignee: AGC INC.Inventors: Hirofumi Tokunaga, Kazutaka Ono, Motoyuki Hirose
-
Patent number: 10683233Abstract: A light selective transmission type glass 10 according to the present invention includes: a glass substrate 12; and a light selective transmission layer 11 provided on at least one main surface of the glass substrate 12. The glass substrate 12 has an average thermal expansion coefficient ?50/100 at 50° C. to 100° C. of 2.70 ppm/° C. to 3.20 ppm/° C., an average thermal expansion coefficient ?200/300 at 200° C. to 300° C. of 3.45 ppm/° C. to 3.95 ppm/° C., a value ?200/300/?50/100 obtained by dividing the average thermal expansion coefficient ?200/300 at 200° C. to 300° C. by the average thermal expansion coefficient ?50/100 at 50° C. to 100° C. of 1.20 to 1.30, and a content of an alkali metal oxide being 0% to 0.1%.Type: GrantFiled: August 2, 2017Date of Patent: June 16, 2020Assignee: AGC Inc.Inventors: Shuhei Nomura, Kazutaka Ono, Yoshiharu Ooi, Hiroki Hotaka
-
Patent number: 10669454Abstract: Disclosed is a method for manufacturing a semiconductor device which includes: a semiconductor chip; a substrate and/or another semiconductor chip; and an adhesive layer interposed therebetween. This method comprises the steps of: heating and pressuring a laminate having: the semiconductor chip; the substrate; the another semiconductor chip or a semiconductor wafer; and the adhesive layer by interposing the laminate with pressing members for temporary press-bonding to thereby temporarily press-bond the substrate and the another semiconductor chip or the semiconductor wafer to the semiconductor chip; and heating and pressuring the laminate by interposing the laminate with pressing members for main press-bonding, which are separately prepared from the pressing members for temporary press-bonding, to thereby electrically connect a connection portion of the semiconductor chip and a connection portion of the substrate or the another semiconductor chip.Type: GrantFiled: October 26, 2016Date of Patent: June 2, 2020Assignee: HITACHI CHEMICAL COMPANY, LTD.Inventors: Kazutaka Honda, Koichi Chabana, Keishi Ono, Akira Nagai
-
Publication number: 20200123043Abstract: A glass substrate for a high-frequency device, which contains SiO2 as a main component, the glass substrate having a total content of alkali metal oxides in the range of 0.001-5% in terms of mole percent on the basis of oxides, the alkali metal oxides having a molar ratio represented by Na2O/(Na2O+K2O) in the range of 0.01-0.99, and the glass substrate having a total content of alkaline earth metal oxides in the range of 0.1-13% in terms of mole percent on the basis of oxides, wherein at least one main surface of the glass substrate has a surface roughness of 1.5 nm or less in terms of arithmetic average roughness Ra, and the glass substrate has a dielectric dissipation factor at 35 GHz of 0.007 or less.Type: ApplicationFiled: December 19, 2019Publication date: April 23, 2020Applicant: AGC Inc.Inventors: Kazutaka ONO, Shuhei NOMURA, Nobutaka KIDERA, Nobuhiko TAKESHITA
-
Publication number: 20200095481Abstract: Disclosed is a method for manufacturing a semiconductor device which includes: a semiconductor chip; a substrate and/or another semiconductor chip; and an adhesive layer interposed therebetween. This method comprises the steps of: heating and pressuring a laminate having: the semiconductor chip; the substrate; the another semiconductor chip or a semiconductor wafer; and the adhesive layer by interposing the laminate with pressing members for temporary press-bonding to thereby temporarily press-bond the substrate and the another semiconductor chip or the semiconductor wafer to the semiconductor chip; and heating and pressuring the laminate by interposing the laminate with pressing members for main press-bonding, which are separately prepared from the pressing members for temporary press-bonding, to thereby electrically connect a connection portion of the semiconductor chip and a connection portion of the substrate or the another semiconductor chip.Type: ApplicationFiled: November 12, 2019Publication date: March 26, 2020Inventors: Kazutaka HONDA, Koichi CHABANA, Keishi ONO, Akira NAGAI
-
Patent number: 10515864Abstract: The present invention provides a glass substrate in which in a step of sticking a glass substrate and a silicon-containing substrate to each other, bubbles hardly intrude therebetween. The present invention relates to a glass substrate for forming a laminated substrate by lamination with a silicon-containing substrate, having a warpage of 2 ?m to 300 ?m, and an inclination angle due to the warpage of 0.0004° to 0.12°.Type: GrantFiled: November 27, 2017Date of Patent: December 24, 2019Assignee: AGC Inc.Inventors: Yu Hanawa, Shigeki Sawamura, Shuhei Nomura, Kazutaka Ono, Nobuhiko Takeshita, Keisuke Hanashima
-
Publication number: 20190385920Abstract: The present invention provides a glass substrate in which in a step of sticking a glass substrate and a silicon-containing substrate to each other, bubbles hardly intrude therebetween. The present invention relates to a glass substrate for forming a laminated substrate by lamination with a silicon-containing substrate, having a warpage of 2 ?m to 300 ?m, and an inclination angle due to the warpage of 0.0004° to 0.12°.Type: ApplicationFiled: August 29, 2019Publication date: December 19, 2019Applicant: AGC Inc.Inventors: Yu Hanawa, Shigeki Sawamura, Shuhei Nomura, Kazutaka Ono, Nobuhiko Takeshita, Keisuke Hanashima
-
Publication number: 20190317376Abstract: The present invention relates to a liquid crystal display panel having a predetermined size, containing a wiring film formed of a metal, an insulating film containing an inorganic substance and a substrate formed of a non-alkali glass, in which the metal has the product of a Young's modulus (E) and a thermal expansion coefficient (?) at room temperature falling within a predetermined range, ? of the inorganic substance is smaller than that of the non-alkali glass, the non-alkali glass has E of from 70 GPa to 95 GPa and ? of from 32×10?7 to 45×10?7 (1/° C.) in which E and ? satisfies a predetermined formula, and has a predetermined composition.Type: ApplicationFiled: June 27, 2019Publication date: October 17, 2019Applicant: AGC Inc.Inventors: Kazutaka ONO, Yasumasa KATO, Masaya KUNIGITA
-
Patent number: 10386686Abstract: The present invention relates to a liquid crystal display panel having a predetermined size, containing a wiring film formed of a metal, an insulating film containing an inorganic substance and a substrate formed of a non-alkali glass, in which the metal has the product of a Young's modulus (E) and a thermal expansion coefficient (?) at room temperature falling within a predetermined range, ? of the inorganic substance is smaller than that of the non-alkali glass, the non-alkali glass has E of from 70 GPa to 95 GPa and ? of from 32×10?7 to 45×10?7 (1/° C.) in which E and ? satisfies a predetermined formula, and has a predetermined composition.Type: GrantFiled: May 25, 2017Date of Patent: August 20, 2019Assignee: AGC Inc.Inventors: Kazutaka Ono, Yasumasa Kato, Masaya Kunigita
-
Publication number: 20190248697Abstract: The present invention relates to an alkali-free glass and a method for producing the same. More specifically, the present invention relates to an alkali-free glass suitable as a glass for substrates of various displays such as liquid crystal display, and a method for producing the same. According to the present invention, an alkali-free glass suitable as a glass for display substrates, in which inclusion of bubbles is greatly reduced by virtue of containing a refining agent and suppressing the stirring reboil, is obtained.Type: ApplicationFiled: April 24, 2019Publication date: August 15, 2019Applicant: AGC Inc.Inventors: Hirofumi TOKUNAGA, Kazutaka Ono, Motoyuki Hirose