Patents by Inventor Kazutaka Sekiya

Kazutaka Sekiya has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240018350
    Abstract: A thermoplastic fluororesin tube that, during the production of a catheter, can prevent a gap or air bubbles from being formed in the connection part of the catheter, and can be suitably used for the production of a catheter. The thermoplastic fluororesin tube includes a tetrafluoroethylene-hexafluoropropylene-perfluoroalkyl vinyl ether copolymer (FEP), the thermoplastic fluororesin tube having tearability in a longitudinal direction, wherein a thermal expansion coefficient in the longitudinal direction upon heating in a gaseous phase at a temperature of 100° C. for 5 minutes is 0% or more.
    Type: Application
    Filed: September 26, 2023
    Publication date: January 18, 2024
    Inventors: Kazutaka Sekiya, Hiroshi Ohshima, Daiki Kobayashi, Masashi Kikuchi
  • Patent number: 11802199
    Abstract: There is provided a thermoplastic fluororesin tube that, during the production of a catheter, can prevent a gap or air bubbles from being formed in the connection part of the catheter, and can be suitably used for the production of a catheter. A thermoplastic fluororesin tube, the thermoplastic fluororesin tube having tearability in a longitudinal direction, wherein a thermal expansion coefficient in the longitudinal direction upon heating in a gaseous phase at a temperature of 100° C. for 5 minutes is 0% or more.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: October 31, 2023
    Assignee: Gunze Limited
    Inventors: Kazutaka Sekiya, Hiroshi Ohshima, Daiki Kobayashi, Masashi Kikuchi
  • Patent number: 10953587
    Abstract: Provided are a tube that has high inner-surface smoothness and outer-surface smoothness and a thickness distribution with a small variation, and a method for manufacturing the tube. The tube includes points a, b, c, and d that satisfy the following conditions (1) and (2): (1) 0.9<Rea/Rec<1.1 and 0.9<Reb/Red<1.1; and (2) Rea/Reb?0.9 or Rea/Reb?1.1. The points a, b, c, and d are four random points that are located on the circumference of the tube on any cross section in the axial direction of the tube, and are aligned in the stated order in a circumferential direction. Rea, Reb, Rec, and Red respectively indicate retardations at the points a, b, c, and d. The tube satisfies the following condition (3): (3) (10-point standard deviation/10-point average)×100?2 in the respective sets A, B, C, and D. Each of the sets A, B, C, and D includes retardations at ten random points present in a range between the point a, b, c, or d and a point 5 mm away from that point in the axial direction.
    Type: Grant
    Filed: March 13, 2019
    Date of Patent: March 23, 2021
    Assignee: GUNZE LIMITED
    Inventors: Daiki Kobayashi, Hiroshi Oshima, Kazutaka Sekiya
  • Publication number: 20200385561
    Abstract: There is provided a thermoplastic fluororesin tube that, during the production of a catheter, can prevent a gap or air bubbles from being formed in the connection part of the catheter, and can be suitably used for the production of a catheter. A thermoplastic fluororesin tube, the thermoplastic fluororesin tube having tearability in a longitudinal direction, wherein a thermal expansion coefficient in the longitudinal direction upon heating in a gaseous phase at a temperature of 100° C. for 5 minutes is 0% or more.
    Type: Application
    Filed: July 5, 2018
    Publication date: December 10, 2020
    Inventors: Kazutaka Sekiya, Hiroshi Ohshima, Daiki Kobayashi, Masashi Kikuchi
  • Publication number: 20190299512
    Abstract: Provided are a tube that has high inner-surface smoothness and outer-surface smoothness and a thickness distribution with a small variation, and a method for manufacturing the tube. The tube includes points a, b, c, and d that satisfy the following conditions (1) and (2): (1) 0.9<Rea/Rec<1.1 and 0.9<Reb/Red<1.1; and (2) Rea/Reb?0.9 or Rea/Reb?1.1. The points a, b, c, and d are four random points that are located on the circumference of the tube on any cross section in the axial direction of the tube, and are aligned in the stated order in a circumferential direction. Rea, Reb, Rec, and Red respectively indicate retardations at the points a, b, c, and d. The tube satisfies the following condition (3): (3) (10-point standard deviation/10-point average)×100?2 in the respective sets A, B, C, and D. Each of the sets A, B, C, and D includes retardations at ten random points present in a range between the point a, b, c, or d and a point 5 mm away from that point in the axial direction.
    Type: Application
    Filed: March 13, 2019
    Publication date: October 3, 2019
    Inventors: Daiki Kobayashi, Hiroshi Oshima, Kazutaka Sekiya