Patents by Inventor Kazuto Yagi

Kazuto Yagi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10161032
    Abstract: Provided is a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more, wherein at least one nonmetallic element selected from S, P, and B is contained in a total amount of 0.1 to 100 mass ppm as the additive component and the variation in the content of the nonmetallic element between the top, middle, and bottom portions of the ingot is within ±200%. Provided is a method of manufacturing a titanium ingot containing a nonmetallic element in an amount of 0.1 to 100 mass ppm, wherein S, P, or B, which is a nonmetallic element, is added to molten titanium as an intermetallic compound or a master alloy to produce a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: December 25, 2018
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kazuto Yagi, Eiji Hino, Yuichiro Shindo
  • Patent number: 9725814
    Abstract: High purity manganese having a purity of 3N (99.9%) or more, wherein number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. A method for producing high purity manganese, wherein refining is performed using a raw material (secondary raw material) obtained by acid-washing a manganese raw material (primary raw material) so that the produced high purity manganese has a purity of 3N (99.9%) or more, and number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. The present invention provides a method for producing high purity metal manganese from commercially available manganese, and aims to obtain high purity metal manganese having a low LPC.
    Type: Grant
    Filed: July 18, 2012
    Date of Patent: August 8, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Kazuto Yagi, Yuichiro Shindo, Eiji Hino
  • Patent number: 9666418
    Abstract: A high-purity titanium target for sputtering containing 0.5 to 5 mass ppm of S as an additive component, wherein the purity of the target excluding additive components and gas components is 99.995 mass percent or higher. An object of this invention is to provide a high-quality titanium target for sputtering which is free from fractures and cracks during high-power sputtering (high-rate sputtering) and is capable of stabilizing the sputtering characteristics.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 30, 2017
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Shiro Tsukamoto, Nobuhito Makino, Atsushi Fukushima, Kazuto Yagi, Eiji Hino
  • Publication number: 20160032427
    Abstract: The present invention relates to a method for manufacturing a high purity Mn, the method comprising: placing a Mn raw material in a magnesia crucible to perform melting with the use of a vacuum induction melting furnace (VIM furnace) at a melting temperature of 1240 to 1400° C. under an inert atmosphere of 500 Torr or less; then adding calcium in a range between 0.5 and 2.0% of the weight of Mn to perform deoxidation and desulfurization; casting the resultant in an iron mold after the completion of the deoxidation and desulfurization to manufacture an ingot; then placing the Mn ingot in a skull melting furnace; reducing pressure to 10?5 Torr or less with a vacuum pump; starting heating and keeping the Mn in a molten state for 10 to 60 minutes; and then ending the melting reaction for obtaining a high purity metal Mn. Provided is a method for manufacturing a high purity metal Mn from a commercially available electrolytic Mn.
    Type: Application
    Filed: September 8, 2014
    Publication date: February 4, 2016
    Inventor: Kazuto Yagi
  • Publication number: 20160002749
    Abstract: The present invention relates to a method for manufacturing a high purity Mn, the method comprising: placing a flake-like electrolytic Mn raw material in a magnesia crucible to perform melting with the use of a vacuum induction melting furnace (VIM furnace) at a melting temperature of 1240 to 1400° C. under an inert atmosphere of 500 Torr or less; then adding calcium in a range between 0.5 and 2.0% of the weight of Mn to perform deoxidation and desulfurization; casting the resultant in an iron mold after the completion of the deoxidation and desulfurization to manufacture an ingot; then placing the Mn ingot into a magnesia crucible to perform melting with the use of a vacuum induction melting furnace (VIM furnace) at a melting temperature, which is adjusted to 1200 to 1450° C. and maintained for 10 to 60 minutes, under an inert atmosphere of 200 Torr or less; casting the resultant in an iron mold to manufacture an ingot; then placing the metal Mn ingot in an alumina crucible; reducing pressure to 0.
    Type: Application
    Filed: September 2, 2014
    Publication date: January 7, 2016
    Applicant: JX Nippon Mining & Metals Corporation
    Inventor: Kazuto Yagi
  • Publication number: 20150021174
    Abstract: Provided is a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more, wherein at least one nonmetallic element selected from S, P, and B is contained in a total amount of 0.1 to 100 mass ppm as the additive component and the variation in the content of the nonmetallic element between the top, middle, and bottom portions of the ingot is within ±200%. Provided is a method of manufacturing a titanium ingot containing a nonmetallic element in an amount of 0.1 to 100 mass ppm, wherein S, P, or B, which is a nonmetallic element, is added to molten titanium as an intermetallic compound or a master alloy to produce a high-purity titanium ingot having a purity, excluding an additive element and gas components, of 99.99 mass % or more.
    Type: Application
    Filed: February 13, 2013
    Publication date: January 22, 2015
    Inventors: Kazuto Yagi, Eiji Hino, Yuichiro Shindo
  • Publication number: 20140356222
    Abstract: High purity manganese having a purity of 3N (99.9%) or more, wherein number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. A method for producing high purity manganese, wherein refining is performed using a raw material (secondary raw material) obtained by acid-washing a manganese raw material (primary raw material) so that the produced high purity manganese has a purity of 3N (99.9%) or more, and number of non-metal inclusions with a size of 0.5 ?m or more is 50000 or less per 1 g of the high purity manganese. The present invention provides a method for producing high purity metal manganese from commercially available manganese, and aims to obtain high purity metal manganese having a low LPC.
    Type: Application
    Filed: July 18, 2012
    Publication date: December 4, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Kazuto Yagi, Yuichiro Shindo, Eiji Hino
  • Publication number: 20140251802
    Abstract: A high-purity titanium target for sputtering containing 0.5 to 5 mass ppm of S as an additive component, wherein the purity of the target excluding additive components and gas components is 99.995 mass percent or higher. An object of this invention is to provide a high-quality titanium target for sputtering which is free from fractures and cracks during high-power sputtering (high-rate sputtering) and is capable of stabilizing the sputtering characteristics.
    Type: Application
    Filed: April 27, 2012
    Publication date: September 11, 2014
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Shiro Tsukamoto, Nobuhito Makino, Atsushi Fukushima, Kazuto Yagi, Eiji Hino
  • Patent number: 8668785
    Abstract: Provided is a method of producing high purity ytterbium, wherein the high purity ytterbium is obtained by reducing crude ytterbium oxide in a vacuum with reducing metals composed of metals having a low vapor pressure, and selectively distilling ytterbium. Additionally provided are methods of achieving the high purification of ytterbium which has a high vapor pressure and is hard to refine in a molten state, and high purity ytterbium obtained thereby. Further provided is technology for efficiently and stably obtaining a sputtering target made of high purity material ytterbium, and a thin film for metal gates containing high purity material ytterbium.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: March 11, 2014
    Assignee: JX Nippon Mining & Metals Corporation
    Inventors: Yuichiro Shindo, Kazuto Yagi
  • Publication number: 20110300017
    Abstract: Provided are a method for manufacturing high-purity erbium, wherein crude erbium oxide is mixed with reducing metal, erbium is reduced and distilled by heating the mixture in a vacuum, and the distillate is melted in an inert atmosphere to obtain high-purity erbium; and high-purity erbium, wherein the purity excluding rare-earth elements and gas components is 4 N or higher and the oxygen content is 200 wtppm or less. An object of this invention is to provide a method of highly purifying erbium, which has a high vapor pressure and is difficult to be refined in a molten metal state, as well as technology for efficiently and stably providing high-purity erbium obtained with the foregoing method, a sputtering target composed of high-purity erbium, and a metal gate film having high-purity erbium as a main component.
    Type: Application
    Filed: January 13, 2010
    Publication date: December 8, 2011
    Applicant: JX NIPPON MINING & METALS CORPORATION
    Inventors: Yuichiro Shindo, Kazuto Yagi
  • Publication number: 20100260640
    Abstract: Provided is a method of producing high purity ytterbium, wherein the high purity ytterbium is obtained by reducing crude ytterbium oxide in a vacuum with reducing metals composed of metals having a low vapor pressure, and selectively distilling ytterbium. Additionally provided are methods of achieving the high purification of ytterbium which has a high vapor pressure and is hard to refine in a molten state, and high purity ytterbium obtained thereby. Further provided is technology for efficiently and stably obtaining a sputtering target made of high purity material ytterbium, and a thin film for metal gates containing high purity material ytterbium.
    Type: Application
    Filed: September 24, 2008
    Publication date: October 14, 2010
    Applicant: NIPPON MINING AND METALS CO., LTD.
    Inventors: Yuichiro Shindo, Kazuto Yagi