Patents by Inventor Kazutoshi Shiba
Kazutoshi Shiba has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9564540Abstract: An object is to provide a semiconductor device having improved reliability by preventing, in forming a nonvolatile memory and MOSFETS on the same substrate, an increase in the size of grains in a gate electrode. The object can be achieved by forming the control gate electrode of the nonvolatile memory and the gate electrodes of the other MOSFETs from films of the same layer, respectively, and configuring each of the control gate electrode and the gate electrodes from a stack of two polysilicon film layers.Type: GrantFiled: July 18, 2015Date of Patent: February 7, 2017Assignee: Renesas Electronics CorporationInventors: Hiroshi Uozaki, Yasuhiro Takeda, Keiichi Maekawa, Takumi Hasegawa, Kota Funayama, Yoshiki Maruyama, Kazutoshi Shiba, Shuichi Kudo
-
Publication number: 20150333139Abstract: An object is to provide a semiconductor device having improved reliability by preventing, in forming a nonvolatile memory and MOSFETS on the same substrate, an increase in the size of grains in a gate electrode. The object can be achieved by forming the control gate electrode of the nonvolatile memory and the gate electrodes of the other MOSFETs from films of the same layer, respectively, and configuring each of the control gate electrode and the gate electrodes from a stack of two polysilicon film layers.Type: ApplicationFiled: July 18, 2015Publication date: November 19, 2015Inventors: Hiroshi Uozaki, Yasuhiro Takeda, Keiichi Maekawa, Takumi Hasegawa, Kota Funayama, Yoshiki Maruyama, Kazutoshi Shiba, Shuichi Kudo
-
Patent number: 9093546Abstract: An object is to provide a semiconductor device having improved reliability by preventing, in forming a nonvolatile memory and MOSFETS on the same substrate, an increase in the size of grains in a gate electrode. The object can be achieved by forming the control gate electrode of the nonvolatile memory and the gate electrodes of the other MOSFETs from films of the same layer, respectively, and configuring each of the control gate electrode and the gate electrodes from a stack of two polysilicon film layers.Type: GrantFiled: October 30, 2013Date of Patent: July 28, 2015Assignee: Renesas Electronics CorporationInventors: Hiroshi Uozaki, Yasuhiro Takeda, Keiichi Maekawa, Takumi Hasegawa, Kota Funayama, Yoshiki Maruyama, Kazutoshi Shiba, Shuichi Kudo
-
Publication number: 20140138758Abstract: An object is to provide a semiconductor device having improved reliability by preventing, in forming a nonvolatile memory and MOSFETS on the same substrate, an increase in the size of grains in a gate electrode. The object can be achieved by forming the control gate electrode of the nonvolatile memory and the gate electrodes of the other MOSFETs from films of the same layer, respectively, and configuring each of the control gate electrode and the gate electrodes from a stack of two polysilicon film layers.Type: ApplicationFiled: October 30, 2013Publication date: May 22, 2014Applicant: Renesas Electronics CorporationInventors: Hiroshi Uozaki, Yasuhiro Takeda, Keiichi Maekawa, Takumi Hasegawa, Kota Funayama, Yoshiki Maruyama, Kazutoshi Shiba, Shuichi Kudo
-
Publication number: 20070161156Abstract: There is provided a method of manufacturing a semiconductor device in which interconnect capacitance is restrained. The semiconductor device 200 comprises a semiconductor substrate; a second interconnect insulating film 216 constituted of a ladder-type hydrogen siloxane formed on the semiconductor substrate; a second protection film 217 provided on the second interconnect insulating film 216; and an upper interconnect 270 formed in the second interconnect insulating film 216 and the second protection film 217. The second interconnect insulating film 216 is constituted of for example an L-Ox™ (trademark) film, and the second protection film 217 is constituted of for example a silicon oxide film.Type: ApplicationFiled: March 19, 2007Publication date: July 12, 2007Applicant: NEC ELECTRONICS CORPORATIONInventors: Kazutoshi Shiba, Hiroyuki Kunishima
-
Patent number: 7217654Abstract: A method of manufacturing a semiconductor device having a damascene structure contains a process of forming a first interlayer insulating film (6) and a second interlayer insulating film (4) formed of a low dielectric-constant film on a substrate, forming via holes (9) by using a first resist pattern (1a) formed on the second interlayer insulating film, conducting an organic peeling treatment using organic peeling liquid containing amine components and then forming a second resist pattern (1b) on the second interlayer insulating film. After the wet treatment, before a second antireflection coating (2b) is coated so as to be located below the second resist pattern is coated, at least one of an annealing treatment, a plasma treatment, a UV treatment and an organic solvent treatment is carried out to remove amine components which inhibit the catalysis reaction of acid occurring in the resist at the light exposure, thereby preventing degradation of the resolution of the second resist pattern (1b).Type: GrantFiled: October 21, 2004Date of Patent: May 15, 2007Assignee: NEC Electronics CorporationInventors: Seiji Nagahara, Kazutoshi Shiba, Nobuaki Hamanaka, Tatsuya Usami, Takashi Yokoyama
-
Publication number: 20070096331Abstract: A method of manufacturing a semiconductor device having a damascene structure contains a process of forming a first interlayer insulating film and a second interlayer insulating film formed of a low dielectric constant film on a substrate, forming via holes by using a first resist pattern formed on the second interlayer insulating film, conducting an organic peeling treatment using organic peeling liquid containing amine components and then forming a second resist pattern on the second interlayer insulating film. After the wet treatment before a second antireflection coating is coated so as to be located below the second resist pattern is coated, at least one of an annealing treatment, a plasma treatment, a UV treatment and an organic solvent treatment is carried out to remove amine components which inhibit the catalysis reaction of acid occurring in the resist at the light exposure, thereby preventing degradation of the resolution of the second resist pattern.Type: ApplicationFiled: December 18, 2006Publication date: May 3, 2007Applicant: NEC ELECTRONICS CORPORATIONInventors: Seiji Nagahara, Kazutoshi Shiba, Nobuaki Hamanaka, Tatsuya Usami, Takashi Yokoyama
-
Patent number: 7211896Abstract: There is provided a method of manufacturing a semiconductor device in which interconnect capacitance is restrained. The semiconductor device 200 comprises a semiconductor substrate; a second interconnect insulating film 216 constituted of a ladder-type hydrogen siloxane formed on the semiconductor substrate; a second protection film 217 provided on the second interconnect insulating film 216; and an upper interconnect 270 formed in the second interconnect insulating film 216 and the second protection film 217. The second interconnect insulating film 216 is constituted of for example an L-Ox™ (trademark) film, and the second protection film 217 is constituted of for example a silicon oxide film.Type: GrantFiled: January 30, 2004Date of Patent: May 1, 2007Assignee: NEC Electronics CorporationInventors: Kazutoshi Shiba, Hiroyuki Kunishima
-
Publication number: 20050124168Abstract: A method of manufacturing a semiconductor device having a damascene structure contains a process of forming a first interlayer insulating film (6) and a second interlayer insulating film (4) formed of a low dielectric-constant film on a substrate, forming via holes (9) by using a first resist pattern (1a) formed on the second interlayer insulating film, conducting an organic peeling treatment using organic peeling liquid containing amine components and then forming a second resist pattern (1b) on the second interlayer insulating film. After the wet treatment, before a second antireflection coating (2b) is coated so as to be located below the second resist pattern is coated, at least one of an annealing treatment, a plasma treatment, a UV treatment and an organic solvent treatment is carried out to remove amine components which inhibit the catalysis reaction of acid occurring in the resist at the light exposure, thereby preventing degradation of the resolution of the second resist pattern (1b).Type: ApplicationFiled: October 21, 2004Publication date: June 9, 2005Applicant: NEC ELECTRONICS CORPORATIONInventors: Seiji Nagahara, Kazutoshi Shiba, Nobuaki Hamanaka, Tatsuya Usami, Takashi Yokoyama
-
Patent number: 6821687Abstract: A photo mask for fabricating a semiconductor device having a dual damascene structure which has a via coupled with a lower wiring layer and has an upper wiring layer coupled with the via. The via and the upper wiring layer are fabricated by filling a via hole and a wiring groove formed in an interlayer insulating film that is formed on the lower wiring layer with a wiring material. The photo mask has a via alignment mark which is used for aligning the via hole with respect to the lower wiring layer and/or a via alignment mark which is used for aligning the wiring groove with respect to the via hole. The width of the via alignment mark is equal to or larger than the width which is optically detectable and an aspect ratio of the via alignment mark is equal to or larger than one fourth of the aspect ratio of the via hole. Preferably, the width of the via alignment mark is equal to or larger than the width of the via hole.Type: GrantFiled: April 2, 2002Date of Patent: November 23, 2004Assignee: NEC Electronics CorporationInventors: Nobuaki Hamanaka, Takashi Yokoyama, Kazutoshi Shiba, Noriaki Oda
-
Publication number: 20040183200Abstract: There is provided a method of manufacturing a semiconductor device in which interconnect capacitance is restrained. The semiconductor device 200 comprises a semiconductor substrate; a second interconnect insulating film 216 constituted of a ladder-type hydrogen siloxane formed on the semiconductor substrate; a second protection film 217 provided on the second interconnect insulating film 216; and an upper interconnect 270 formed in the second interconnect insulating film 216 and the second protection film 217. The second interconnect insulating film 216 is constituted of for example an L-Ox™ (trademark) film, and the second protection film 217 is constituted of for example a silicon oxide film.Type: ApplicationFiled: January 30, 2004Publication date: September 23, 2004Applicant: NEC ELECTRONICS CORPORATIONInventors: Kazutoshi Shiba, Hiroyuki Kunishima
-
Publication number: 20030170993Abstract: A method of manufacturing a semiconductor device having a damascene structure contains a process of forming a first interlayer insulating film (6) and a second interlayer insulating film (4) formed of a low dielectric-constant film on a substrate, forming via holes (9) by using a first resist pattern (1a) formed on the second interlayer insulating film, conducting an organic peeling treatment using organic peeling liquid containing amine components and then forming a second resist pattern (1b) on the second interlayer insulating film. After the wet treatment, before a second antireflection coating (2b) is coated so as to be located below the second resist pattern is coated, at least one of an annealing treatment, a plasma treatment, a UV treatment and an organic solvent treatment is carried out to remove amine components which inhibit the catalysis reaction of acid occurring in the resist at the light exposure, thereby preventing degradation of the resolution of the second resist pattern (1b).Type: ApplicationFiled: November 26, 2002Publication date: September 11, 2003Inventors: Seiji Nagahara, Kazutoshi Shiba, Nobuaki Hamanaka, Tatsuya Usami, Takashi Yokoyama
-
Publication number: 20020142235Abstract: A photo mask for fabricating a semiconductor device having a dual damascene structure which has a via coupled with a lower wiring layer and has an upper wiring layer coupled with the via. The via and the upper wiring layer are fabricated by filling a via hole and a wiring groove formed in an interlayer insulating film that is formed on the lower wiring layer with a wiring material. The photo mask has a via alignment mark which is used for aligning the via hole with respect to the lower wiring layer and/or a via alignment mark which is used for aligning the wiring groove with respect to the via hole. The width of the via alignment mark is equal to or larger than the width which is optically detectable and an aspect ratio of the via alignment mark is equal to or larger than one fourth of the aspect ratio of the via hole. Preferably, the width of the via alignment mark is equal to or larger than the width of the via hole.Type: ApplicationFiled: April 2, 2002Publication date: October 3, 2002Applicant: NEC CORPORATIONInventors: Nobuaki Hamanaka, Takashi Yokoyama, Kazutoshi Shiba, Noriaki Oda
-
Patent number: 6459126Abstract: A MIS transistor has a gate insulating film made of silicon oxynitride and having a specific dielectric constant which is larger than the expected specific dielectric constant calculated based on a weighted average of the specific dielectric constants based on the weight ratio of the silicon oxide and the silicon nitride contained in the silicon oxynitride film. The gate insulating film having a smaller thickness prevents impurities in the overlying gate electrode from penetrating through the gate insulating film to degrade the silicon substrate.Type: GrantFiled: May 11, 2001Date of Patent: October 1, 2002Assignee: NEC CorporationInventors: Tohru Mogami, Mitsuhiro Togo, Koji Watanabe, Toyoji Yamamoto, Nobuyuki Ikarashi, Kazutoshi Shiba, Toru Tatsumi, Haruhiko Ono
-
Publication number: 20020096721Abstract: A MIS transistor has a gate insulating film made of silicon oxynitride and having a specific dielectric constant which is larger than the expected specific dielectric constant calculated based on a weighted average of the specific dielectric constants based on the weight ratio of the silicon oxide and the silicon nitride contained in the silicon oxynitride film. The gate insulating film having a smaller thickness prevents impurities in the overlying gate electrode from penetrating through the gate insulating film to degrade the silicon substrate.Type: ApplicationFiled: May 11, 2001Publication date: July 25, 2002Applicant: NEC CORPORATIONInventors: Tohru Mogami, Mitsuhiro Togo, Koji Watanabe, Toyoji Yamamoto, Nobuyuki Ikarashi, Kazutoshi Shiba, Toru Tatsumi, Haruhiko Ono