Patents by Inventor Kazuya DAITO

Kazuya DAITO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220291082
    Abstract: Embodiments of the present disclosure relate to measurement systems and methods of measuring efficiency of optical devices. In one example, the measurement systems include a light source, a mirror, an illumination source, and a sensor. The light source provides a light beam to the optical device to be diffracted into diffraction beams having diffraction orders. The diffractions beams form a diffraction pattern. The method includes positioning the optical device in the measurement system and directing the diffraction beams to the sensor. The sensor is operable to measure the efficiency of the optical device by measuring the diffraction pattern.
    Type: Application
    Filed: March 7, 2022
    Publication date: September 15, 2022
    Inventors: Jinxin FU, Yangyang SUN, Kazuya DAITO, Ludovic GODET
  • Patent number: 11421322
    Abstract: Embodiments of a blocker plate for use in a substrate process chamber are disclosed herein. In some embodiments, a blocker plate for use in a substrate processing chamber configured to process substrates having a given diameter includes: an annular rim; a central plate disposed within the annular rim; and a plurality of spokes coupling the central plate to the annular rim.
    Type: Grant
    Filed: July 24, 2019
    Date of Patent: August 23, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiaoxiong Yuan, Yu Lei, Yi Xu, Kazuya Daito, Pingyan Lei, Dien-Yeh Wu, Umesh M. Kelkar, Vikash Banthia
  • Patent number: 11404313
    Abstract: Embodiments of the disclosure relate to methods of depositing tungsten. Some embodiments of the disclosure provide methods for depositing tungsten which are performed at relatively low temperatures. Some embodiments of the disclosure provide methods in which the ratio between reactant gasses is controlled. Some embodiments of the disclosure provide selective deposition of tungsten. Some embodiments of the disclosure provide methods for depositing tungsten films at a low temperature with relatively low roughness, stress and impurity levels.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: August 2, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Yi Xu, Yufei Hu, Yu Lei, Kazuya Daito, Da He, Jiajie Cen
  • Publication number: 20220181201
    Abstract: Embodiments of the disclosure provide methods which reduce or eliminate lateral growth of a selective tungsten layer. Further embodiments provide an integrated clean and deposition method which improves the selectivity of selectively deposited tungsten on trench structures. Additional embodiments provide methods for forming a more uniform and selective bottom-up gap fill for trench structures with improved film properties.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 9, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Yi XU, Yufei HU, He REN, Yu LEI, Shi YOU, Kazuya DAITO
  • Patent number: 11355391
    Abstract: The present disclosure generally relates to methods for processing of substrates, and more particularly relates to methods for forming a metal gapfill. In one implementation, the method includes forming a metal gapfill in an opening using a multi-step process. The multi-step process includes forming a first portion of the metal gapfill, performing a sputter process to form one or more layers on one or more side walls, and growing a second portion of the metal gapfill to fill the opening with the metal gapfill. The metal gapfill formed by the multi-step process is seamless, and the one or more layers formed on the one or more side walls seal any gaps or defects between the metal gapfill and the side walls. As a result, fluids utilized in subsequent processes do not diffuse through the metal gapfill.
    Type: Grant
    Filed: February 27, 2020
    Date of Patent: June 7, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xi Cen, Feiyue Ma, Kai Wu, Yu Lei, Kazuya Daito, Yi Xu, Vikash Banthia, Mei Chang, He Ren, Raymond Hoiman Hung, Yakuan Yao, Avgerinos V. Gelatos, David T. Or, Jing Zhou, Guoqiang Jian, Chi-Chou Lin, Yiming Lai, Jia Ye, Jenn-Yue Wang
  • Publication number: 20220163423
    Abstract: Embodiments described herein provide for light engines of a measurement system and methods of using the light engines. The measurement system includes a light engine operable to illuminate a first grating of an optical device. The light engine projects a pattern with a light from a light engine. The light engine projects a pattern to the first grating such that a metrology metric may be extracted from one or more images captured by a detector of the measurement system. The metrology metrics are extracted by processing the image. The metrology metrics determine if the optical device meets image quality standards.
    Type: Application
    Filed: November 23, 2021
    Publication date: May 26, 2022
    Inventors: Yangyang SUN, Jinxin FU, Kazuya DAITO, Ludovic GODET
  • Publication number: 20220163382
    Abstract: A method of optical device metrology is provided. The method includes providing a first type of light into a first optical device during a first time period; measuring a quantity of the first type of light transmitted from a first location on the top surface or the bottom surface during the first time period; coating at least a portion of an edge of the one or more edges with a first coating of optically absorbent material during a second time period that occurs after the first time period; providing the first type of light into the first optical device during a third time period that occurs after the second time period; and measuring a quantity of the first type of light transmitted from the first location on the top surface or the bottom surface during the third time period.
    Type: Application
    Filed: November 24, 2021
    Publication date: May 26, 2022
    Inventors: Jinxin FU, Kazuya DAITO, Ludovic GODET
  • Publication number: 20220120700
    Abstract: Embodiments of the present disclosure relate to optical devices for augmented, virtual, and/or mixed reality applications. In one or more embodiments, an optical device metrology system is configured to measure a plurality of see-through metrics for optical devices.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 21, 2022
    Inventors: Yangyang SUN, Jinxin FU, Kazuya DAITO, Ludovic GODET
  • Publication number: 20220121030
    Abstract: Embodiments of the present disclosure relate to optical devices for augmented, virtual, and/or mixed reality applications. In one or more embodiments, an optical device metrology system is configured to measure a plurality of see-through metrics for optical devices.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 21, 2022
    Inventors: Yangyang SUN, Jinxin FU, Kazuya DAITO, Ludovic GODET
  • Publication number: 20220122240
    Abstract: Embodiments of the present disclosure relate to optical devices for augmented, virtual, and/or mixed reality applications. In one or more embodiments, an optical device metrology system is configured to measure a plurality of first metrics and one or more second metrics for optical devices, the one or more second metrics including a display leakage metric.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 21, 2022
    Inventors: Yangyang SUN, Jinxin FU, Kazuya DAITO, Ludovic GODET
  • Publication number: 20220122241
    Abstract: Embodiments of the present disclosure relate to optical devices for augmented, virtual, and/or mixed reality applications. In one or more embodiments, an optical device metrology system is configured to measure a plurality of first metrics and one or more second metrics for optical devices, the one or more second metrics including a display leakage metric.
    Type: Application
    Filed: October 4, 2021
    Publication date: April 21, 2022
    Inventors: Yangyang SUN, Jinxin FU, Kazuya DAITO, Ludovic GODET
  • Publication number: 20220010431
    Abstract: A method and apparatus for producing a gas distribution apparatus are described herein. More specifically, a method and apparatus for producing triple-channel gas distribution apparatus is described herein. The gas distribution apparatus described herein includes an upper plate, a middle plate, and a lower plate. The middle plate and the lower plate are machined before all of the upper plate, the middle plate, and the lower plate are bonded. Additional machining is then performed on the gas distribution apparatus. The gas distribution apparatus is used to distribute three or more process gases into a processing chamber.
    Type: Application
    Filed: July 8, 2020
    Publication date: January 13, 2022
    Inventors: Kazuya DAITO, Ravi JALLEPALLY, Harpreet SINGH
  • Publication number: 20210398850
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A temperature of a pedestal comprising a cooling feature on which a substrate is located is set to less than or equal to 100° C. The substrate is exposed to a plasma treatment to remove chemical residual and/or impurities from features of the substrate including a metal bottom, dielectric sidewalls, and/or a field of dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The plasma treatment may be an oxygen plasma, for example, a direct oxygen plasma. Processing tools and computer readable media for practicing the method are also described.
    Type: Application
    Filed: June 22, 2020
    Publication date: December 23, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Kazuya Daito, Geraldine M. Vasquez, Da He, Jallepally Ravi, Yu Lei, Dien-Yeh Wu
  • Publication number: 20210335586
    Abstract: Methods and apparatus for cleaning a showerhead are provided. For example, the methods includes moving a substrate support including a heater disposed therein from a substrate processing position a first distance away from the showerhead to a cleaning position a second distance away from the showerhead, wherein the second distance is less than the first distance; heating the showerhead using the heater disposed in the substrate support to a predetermined temperature; at least one of supplying at least one cleaning gas to the processing chamber to form a plasma or supplying the plasma from a remote plasma source; and providing a predetermined pressure within an inner volume of the processing chamber and maintaining the plasma within the inner volume of the processing chamber while heating the showerhead to the predetermined temperature.
    Type: Application
    Filed: April 22, 2020
    Publication date: October 28, 2021
    Inventors: Tom H. YU, Wei Min CHAN, Peiqi WANG, Kai WU, Adolph Miller ALLEN, Kazuya DAITO
  • Publication number: 20210327717
    Abstract: Methods and apparatus for the formation of cobalt disilicide are described. Some embodiments of the disclosure provide in-situ methods of forming cobalt disilicide. The resulting films are smoother and have lower resistance and resistivity than films formed by similar ex-situ methods. Some embodiments of the disclosure provide apparatus for performing the described methods without an air break between processes.
    Type: Application
    Filed: April 15, 2020
    Publication date: October 21, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Tom Ho Wing Yu, Nobuyuki Sasaki, Kazuya Daito
  • Patent number: 11062900
    Abstract: Methods and apparatus for forming a semiconductor structure with a scaled effective oxide thickness is disclosed. In embodiments, a method includes depositing amorphous silicon capping layer having a first surface atop a first surface of a titanium nitride (TiN) layer, wherein the titanium nitride layer is atop a first surface of a high-k dielectric layer disposed within a film stack; contacting the first surface of the amorphous silicon capping layer with a nitrogen containing gas; and annealing the film stack.
    Type: Grant
    Filed: December 1, 2019
    Date of Patent: July 13, 2021
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Luping Li, Shih Chung Chen, Kazuya Daito, Lin Dong, Zhebo Chen, Yixiong Yang, Steven Hung
  • Publication number: 20210159052
    Abstract: Provided is a processing chamber configured to contain a semiconductor substrate in a processing region of the chamber. The processing chamber includes a remote plasma unit and a direct plasma unit, wherein one of the remote plasma unit or the direct plasma unit generates a remote plasma and the other of the remote plasma unit or the direct plasma unit generates a direct plasma. The combination of a remote plasma unit and a direct plasma unit is used to remove, etch, clean, or treat residue on a substrate from previous processing and/or from native oxide formation. The combination of a remote plasma unit and direct plasma unit is used to deposit thin films on a substrate.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Kazuya Daito, Yi Xu, Yu Lei, Takashi Kuratomi, Jallepally Ravi, Pingyan Lei, Dien-Yeh Wu
  • Publication number: 20210159070
    Abstract: Methods for pre-cleaning substrates having metal and dielectric surfaces are described. A substrate comprising a surface structure with a metal bottom, dielectric sidewalls, and a field of dielectric is exposed to a dual plasma treatment in a processing chamber to remove chemical residual and/or impurities from the metal bottom, the dielectric sidewalls, and/or the field of the dielectric and/or repair surface defects in the dielectric sidewalls and/or the field of the dielectric. The dual plasma treatment comprises a direct plasma and a remote plasma.
    Type: Application
    Filed: November 23, 2020
    Publication date: May 27, 2021
    Applicant: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Kazuya Daito, Yu Lei, Dien-Yeh Wu, Jallepally Ravi
  • Publication number: 20200335395
    Abstract: Embodiments of the disclosure relate to methods of depositing tungsten. Some embodiments of the disclosure provide methods for depositing tungsten which are performed at relatively low temperatures. Some embodiments of the disclosure provide methods in which the ratio between reactant gasses is controlled. Some embodiments of the disclosure provide selective deposition of tungsten. Some embodiments of the disclosure provide methods for depositing tungsten films at a low temperature with relatively low roughness, stress and impurity levels.
    Type: Application
    Filed: June 30, 2020
    Publication date: October 22, 2020
    Applicant: Applied Materials, Inc.
    Inventors: Yi Xu, Yufei Hu, Yu Lei, Kazuya Daito, Da He, Jiajie Cen
  • Patent number: 10793951
    Abstract: Apparatus for improving substrate temperature uniformity in a substrate processing chamber are provided herein. In some embodiments, a substrate support processing chamber may include a chamber body having a bottom portion and a sidewall having a slit valve opening to load and unload substrates, a pin lift mechanism, disposed in a pin lift mechanism opening formed in the bottom portion of the chamber body, having a plurality of substrate support pins coupled to the pin lift mechanism, a movable substrate support heater having substrate support portion and a shaft, and a cover plate disposed about the shaft of the movable substrate support, wherein the cover plate covers the pin lift mechanism and pin lift mechanism opening.
    Type: Grant
    Filed: April 23, 2018
    Date of Patent: October 6, 2020
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gwo-Chuan Tzu, Kazuya Daito, Sang-Hyeob Lee