Patents by Inventor Kazuya Takayama

Kazuya Takayama has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240329295
    Abstract: A plastic optical fiber of the present disclosure includes: a core including a first region having a refractive index decreasing in a direction from a center of the core toward an outer edge of the core; and a trench disposed on an outer circumference of the core. When a refractive index difference between a refractive index n1 at the outer edge of the core and a refractive index n2 of the trench is defined as ?n and a thickness of the trench is defined as d (?m), a value of ?n×d is 0.010 or more and 0.06 or less.
    Type: Application
    Filed: March 26, 2024
    Publication date: October 3, 2024
    Applicant: NITTO DENKO CORPORATION
    Inventors: Takashi Shimizu, Toru Moriya, Kazuya Takayama, Hiroshi Ohmura
  • Publication number: 20240329296
    Abstract: A plastic optical fiber of the present disclosure includes a core and a trench disposed on an outer circumference of the core. The core includes a first region and a second region, the first region having a refractive index n1 decreasing in a direction from a center of the core toward an outer edge of the core, the second region being positioned on an outer circumference of the first region, the second region including the outer edge of the core, the second region having a refractive index n2 being constant. The refractive index n2 of the second region is equal to or lower than the refractive index n1 of the first region, a thickness of the second region is 2 ?m or more and less than 5 ?m, and a refractive index n3 of the trench is lower than the refractive index n2 of the second region.
    Type: Application
    Filed: March 26, 2024
    Publication date: October 3, 2024
    Applicant: NITTO DENKO CORPORATION
    Inventors: Toru Moriya, Kazuya Takayama, Hiroshi Ohmura
  • Patent number: 9824651
    Abstract: A display device disclosed includes a liquid crystal panel (6), and an image optimization circuit (4) for switching, in accordance with an update frequency of image data, between (i) a first mode in which a liquid crystal driver (7) is driven at a first driving frequency and (ii) a second mode in which the liquid crystal driver (7) is driven at a second driving frequency lower than the first driving frequency. The display device can therefore be used even in a case where a transmission path for image data is limited and optimally display high-resolution image data with reduced electric power consumption.
    Type: Grant
    Filed: November 14, 2013
    Date of Patent: November 21, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Tetsuya Umekida, Kenji Maeda, Tatsuo Watanabe, Masayuki Natsumi, Yuichi Sato, Kazuya Takayama
  • Patent number: 9823777
    Abstract: A touch panel driving device includes: a noise detection section (43) that detects the presence or absence of at least external noise of an input operation performed on a touch panel (30); and a liquid crystal drive parameter setting section (51) that, in a case where the presence of external noise has been detected by the noise detection section (43), executes a process for reducing the external noise by adjusting a cycle or duration of a 1H period.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: November 21, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventors: Kazuya Takayama, Kenji Maeda, Masayuki Natsumi, Tatsuo Watanabe, Yuichi Sato, Tetsuya Umekida
  • Publication number: 20150310814
    Abstract: A display device disclosed includes a liquid crystal panel (6), and an image optimization circuit (4) for switching, in accordance with an update frequency of image data, between (i) a first mode in which a liquid crystal driver (7) is driven at a first driving frequency and (ii) a second mode in which the liquid crystal driver (7) is driven at a second driving frequency lower than the first driving frequency. The display device can therefore be used even in a case where a transmission path for image data is limited and optimally display high-resolution image data with reduced electric power consumption.
    Type: Application
    Filed: November 14, 2013
    Publication date: October 29, 2015
    Inventors: Tetsuya UMEKIDA, Kenji MAEDA, Tatsuo WATANABE, Masayuki NATSUMI, Yuichi SATO, Kazuya TAKAYAMA
  • Publication number: 20150301647
    Abstract: An input device includes a touch panel including a touch sensor that detects an operation by an operator, and a display. The input device executes information processing based on information input on the touch sensor. The touch sensor is capable of changing a detection output to the information processing means, in accordance with a position of an object at a distance from the touch sensor. The input device also determines whether an operation on the touch sensor is performed with an operator's right hand or left hand, based on a distribution of the detection output from the touch sensor.
    Type: Application
    Filed: October 15, 2013
    Publication date: October 22, 2015
    Applicant: Sharp Kabushiki Kaisha
    Inventors: Yuichi SATO, Kenji MAEDA, Tatsuo WATANABE, Kazuya TAKAYAMA, Masayuki NATSUMI, Tetsuya UMEKIDA
  • Publication number: 20150185956
    Abstract: A touch panel driving device includes: a noise detection section (43) that detects the presence or absence of at least external noise of an input operation performed on a touch panel (30); and a liquid crystal drive parameter setting section (51) that, in a case where the presence of external noise has been detected by the noise detection section (43), executes a process for reducing the external noise by adjusting a cycle or duration of a 1H period.
    Type: Application
    Filed: August 12, 2013
    Publication date: July 2, 2015
    Inventors: Kazuya Takayama, Kenji Maeda, Masayuki Natsumi, Tatsuo Watanabe, Yuichi Sato, Tetsuya Umekida
  • Publication number: 20140139915
    Abstract: An image display apparatus having sub-pixels of four colors is provided in which the resolution when an image is two-dimensionally displayed is not affected, and deterioration in the color balance of a three-dimensionally displayed image is suppressed. In the image display apparatus, the arrangement of a sub-pixel for displaying red for a left eye and a sub-pixel for displaying green for a right eye has been replaced with the arrangement of a sub-pixel (Lg1) for displaying green for the left eye and a sub-pixel (Rr1) for displaying red for the right eye. The arrangement of a sub-pixel for displaying blue for the left eye and a sub-pixel for displaying yellow for the right eye has been replaced with the arrangement of a sub-pixel (Lx1) for displaying yellow for the left eye and a sub-pixel (Rb1) for displaying blue for the right eye. Replacement with the sub-pixel and the sub-pixel and replacement with the sub-pixel and the sub-pixel are made for every other pixel.
    Type: Application
    Filed: July 6, 2012
    Publication date: May 22, 2014
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Yuichi Sato, Kenji Maeda, Masayuki Natsumi, Tatsuo Watanabe, Kazuya Takayama, Takashi Yasumoto, Yoshimitsu Inamori
  • Patent number: 7130517
    Abstract: A planar optical waveguide is provided. The planar optical waveguide includes a polymer substrate having a coefficient of thermal expansion, a first cladding disposed on the substrate, and a core disposed on at least a portion of the first cladding. The core is a halogenated polymer having an absorptive optical loss of less than approximately 2.5×10?4 dB/cm in the range from about 1250 to 1700 nm. The core has a thermo-optic coefficient and a refractive index, a product of the thermo-optic coefficient and the reciprocal of the refractive index being approximately equal to the negative of the coefficient of thermal expansion.
    Type: Grant
    Filed: September 16, 2002
    Date of Patent: October 31, 2006
    Assignee: Photon X, LLC
    Inventors: Anthony Garito, Renyuan Gao, Renfeng Gao, Yu-Ling Hsiao, Kazuya Takayama, Aydin Yeniay
  • Patent number: 6917749
    Abstract: An optical waveguide is provided. The optical waveguide includes a polymer substrate and a lower cladding disposed on the substrate. The lower cladding is a first perhalogenated polymer. The optical waveguide also includes a core disposed on at least a portion of the lower cladding. A method of manufacturing the optical waveguide is also provided.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: July 12, 2005
    Assignee: Photon-X, LLC
    Inventors: Renyuan Gao, Donald S. Bitting, Robert M. Mininni, Robert A. Norwood, Kazuya Takayama, Anthony F. Garito
  • Patent number: 6801703
    Abstract: An optical waveguide is disclosed. The waveguide includes a first cladding layer having a first exposed surface portion and a second surface portion generally opposing the first exposed surface portion, and a core disposed on a portion of the second surface portion. The core has a first end and a second end. The waveguide also includes a second cladding layer having a first exposed surface portion and a second surface portion generally opposing the first exposed surface portion. The second surface portion of the second cladding layer is disposed on the core and a remaining portion of the second surface portion of the first cladding layer. An optical waveguide assembly incorporating the optical waveguide and a method of manufacturing the waveguide are also disclosed.
    Type: Grant
    Filed: August 8, 2001
    Date of Patent: October 5, 2004
    Assignee: Photon-X, LLC
    Inventors: Renyuan Gao, Kazuya Takayama
  • Publication number: 20030234978
    Abstract: The present invention relates to optical waveguide devices and optical waveguide amplifiers for amplification in a range from 1.5 &mgr;m to about 1.6 &mgr;m wavelength. The present invention also relates to planar optical waveguides, fiber waveguides, and communications systems employing them. The optical waveguide devices according to the present invention comprise a polymer host matrix. Within the polymer host matrix, a plurality of nanoparticles can be incorporated to form a polymer nanocomposite. To obtain amplification in the above-described range, the nanoparticles comprises Erbium. The host matrix itself may comprise composite materials, such as polymer nanocomposites, and further the nanoparticles themselves may comprise composite materials.
    Type: Application
    Filed: January 8, 2003
    Publication date: December 25, 2003
    Inventors: Anthony F. Garito, Renyuan Gao, Yu-Ling Hsiao, Brian Thomas, Jingsong Zhu, Kazuya Takayama
  • Publication number: 20030229189
    Abstract: The present invention discloses a class of random glassy polymer materials, namely nanoporous polymer materials, which contain pores with dimensions ranging from about 1 nm to about 1000 nm. The present invention also discloses a method of making a nanoporous polymer material by controlling the size, shape, volume fraction, and topological features of the pores, which comprises annealing the polymer material at a temperature above its glass transition temperature. The present invention further discloses the use of the resulting nanoporous polymer material to make devices, such as optical devices. For example, the resulting nanoporous polymer can be used to make a planar waveguide that can exhibit an optical loss of less than 0.5 dB/cm.
    Type: Application
    Filed: February 7, 2003
    Publication date: December 11, 2003
    Inventors: Kazuya Takayama, Yu-Ling Hsiao, Renyuan Gao, Anthony F. Garito
  • Publication number: 20030223673
    Abstract: A multifunctional integrated optical waveguide is provided. The planar optical waveguide structure includes an active gain medium for optical amplification, and a passive component(s) (i.e. arrayed waveguide grating, splitter, and tap) for processing the signal (i.e. multiplexing, demultiplexing, monitoring, add-dropping, routing and splits) on a solid substrate.
    Type: Application
    Filed: March 17, 2003
    Publication date: December 4, 2003
    Inventors: Anthony F. Garito, Renyuan Gao, Renfeng Gao, Aydin Yeniay, Kazuya Takayama, Yu-Ling Hsiao, Robert Norwood
  • Publication number: 20030202770
    Abstract: The present invention relates to optical waveguide devices and optical waveguide amplifiers for amplification in a range from 1.27 &mgr;m to about 1.6 &mgr;m wavelength, advantageously for about 1.3 &mgr;m wavelength amplification. The present invention also relates to planar optical waveguides, fiber waveguides, and communications systems employing them. The optical waveguide devices according to the present invention comprise a host matrix including polymers, solvents, crystals, and liquid crystals. Within the host matrix, a plurality of nanoparticles can be mixed to form a nanocomposite. The host matrix itself may comprise composite materials, such as polymer nanocomposites.
    Type: Application
    Filed: January 3, 2003
    Publication date: October 30, 2003
    Inventors: Anthony F. Garito, Renyuan Gao, Yu-Ling Hsiao, Brian Thomas, Jingsong Zhu, Kazuya Takayama
  • Publication number: 20030180029
    Abstract: A solid substrate comprising a first major surface, a second major surface juxtaposed from and parallel or substantially parallel to the first major surface, wherein the substrate has a plurality of surface relief structures, located on the substrate between the first and second major surfaces, and extending over the substrate; wherein the solid substrate comprises a host matrix, and at least one nanoparticle within the host matrix.
    Type: Application
    Filed: March 17, 2003
    Publication date: September 25, 2003
    Inventors: Anthony F. Garito, Yu-Ling Hsiao, Renyuan Gao, Renfeng Gao, Joseph Chang, Donald Bitting, Kazuya Takayama, Jaya Sharma, Jingsong Zhu, Brian Thomas, Anna Panackal
  • Publication number: 20030174964
    Abstract: An optical waveguide assembly is disclosed. The assembly includes a substrate lying in a plane. The substrate includes a covered surface and an exposed surface. The substrate further includes a channel formed therein along an axis generally perpendicular to the plane from the exposed surface toward the covered surface. A first cladding layer is disposed on the covered surface of the substrate. A core is disposed on the first cladding layer, wherein the core intersects the axis. An optical fiber is disposed within the channel so that a signal light is transmittable between the core and the optical fiber.
    Type: Application
    Filed: January 6, 2003
    Publication date: September 18, 2003
    Applicant: Photon-X, Inc.
    Inventors: Renyuan Gao, Kazuya Takayama, Anthony Garito
  • Patent number: 6603917
    Abstract: A waveguide optical amplifier is disclosed. The waveguide optical amplifier includes a generally planar substrate and a lower cladding disposed on the substrate. A first barrier is disposed on the lower cladding and a core is disposed on at least a portion of the first barrier.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: August 5, 2003
    Assignee: Photon-X, Inc
    Inventors: Kazuya Takayama, Donald S. Bitting, Robert A. Norwood
  • Publication number: 20030123828
    Abstract: A planar optical waveguide is provided. The planar optical waveguide includes a polymer substrate having a coefficient of thermal expansion, a first cladding disposed on the substrate, and a core disposed on at least a portion of the first cladding. The core is a halogenated polymer having an absorptive optical loss of less than approximately 2.5×1031 ∝dB/cm in the range from about 1250 to 1700 nm. The core has a thermo-optic coefficient and a refractive index, a product of the thermo-optic coefficient and the reciprocal of the refractive index being approximately equal to the negative of the coefficient of thermal expansion.
    Type: Application
    Filed: September 16, 2002
    Publication date: July 3, 2003
    Inventors: Anthony Garito, Renyuan Gao, Renfeng Gao, Yu-Ling Hsiao, Kazuya Takayama, Aydin Yeniay
  • Publication number: 20030086679
    Abstract: An optical waveguide is provided. The optical waveguide includes a polymer substrate and a lower cladding disposed on the substrate. The lower cladding is a first perhalogenated polymer. The optical waveguide also includes a core disposed on at least a portion of the lower cladding. A method of manufacturing the optical waveguide is also provided.
    Type: Application
    Filed: November 7, 2001
    Publication date: May 8, 2003
    Applicant: Photon-X, Inc.
    Inventors: Renyuan Gao, Donald S. Bitting, Robert M. Mininni, Robert A. Norwood, Kazuya Takayama