Patents by Inventor Kazuyuki Mitsuoka

Kazuyuki Mitsuoka has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10207349
    Abstract: In the present disclosure, the high-pressure chamber includes a chamber main body including a flat rectangular parallelepiped block of a metal which is formed with a flat cavity that serves as a substrate processing space in which a processing using a high-pressure fluid is performed on a substrate, and the substrate processing space being formed by machining the block from one of faces of the block other than the widest face towards another face opposing thereto. In a case where the cavity is constituted as a through hole, the though hole is provided with a cover configured to open or close the cavity on one side of the through hole, and a second block configured to air-tightly seal the cavity on the other side.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: February 19, 2019
    Assignee: Tokyo Electron Limited
    Inventors: Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima, Hiroaki Inadomi
  • Patent number: 10199240
    Abstract: A substrate processing method and apparatus which can remove an anti-drying liquid, which has entered a three-dimensional pattern with recessed portions formed in a substrate, in a relatively short time. The substrate processing method includes the steps of: carrying a substrate, having a three-dimensional pattern formed in a surface, into a processing container, said pattern being covered with an anti-drying liquid that has entered the recessed portions of the pattern; heating the substrate and supplying a pressurizing gas or a fluid in a high-pressure state into the processing container, thereby forming a high-pressure atmosphere in the processing container before the anti-drying liquid vaporizes to such an extent as to cause pattern collapse and bringing the anti-drying liquid into a high-pressure state while keeping the liquid in the recessed portions of the pattern; and thereafter discharging a fluid in a high-pressure state or a gaseous state from the processing container.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: February 5, 2019
    Assignees: Toshiba Memory Corporation, Tokyo Electron Limited
    Inventors: Hidekazu Hayashi, Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Kazuyuki Mitsuoka, Mitsuaki Iwashita, Takehiko Orii, Gen You, Hiroki Ohno, Takayuki Toshima
  • Patent number: 10115609
    Abstract: Disclosed is a separation and regeneration apparatus including: a supercritical processing unit configured to generate a mixed gas including a first fluorine-containing organic solvent having a first boiling point and a second fluorine-containing organic solvent having a second boiling point lower than the first boiling point; and a distillation tank configured to store hot water having a temperature between the first boiling point and the second boiling point, in which the mixed gas is input into the hot water to be separated into the first fluorine-containing organic solvent in a liquid state and the second fluorine-containing organic solvent in a gas state, in which an introduction line configured to guide the mixed gas from the supercritical processing unit to the distillation tank is provided and a distal end of the introduction line is disposed in the hot water.
    Type: Grant
    Filed: March 11, 2015
    Date of Patent: October 30, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Kazuyuki Mitsuoka, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
  • Patent number: 10096462
    Abstract: A substrate processing method and apparatus for preventing evaporation of an anti-drying fluorine-containing organic solvent from a substrate during transportation of the substrate into a processing container and can prevent decomposition of a fluorine-containing organic solvent in the processing container. A substrate, the surface of which is covered with a first fluorine-containing organic solvent, is carried into a processing container. The first fluorine-containing organic solvent is removed from the substrate surface by forming a high-pressure fluid atmosphere of a mixture of the first fluorine-containing organic solvent and a second fluorine-containing organic solvent, having a lower boiling point than the first fluorine-containing organic solvent, in the processing container e.g. by supplying a high-pressure fluid of the second fluorine-containing organic solvent into the processing container.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: October 9, 2018
    Assignees: Toshiba Memory Corporation, Tokyo Electron Limited
    Inventors: Hidekazu Hayashi, Yohei Sato, Hisashi Okuchi, Hiroshi Tomita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
  • Patent number: 10046370
    Abstract: The present disclosure provides a substrate processing apparatus including: a processing chamber configured to process a substrate; a fluid supply source configured to supply a substrate processing fluid used in processing for the substrate in a predetermined pressure; a constant pressure supplying path configured to supply the substrate processing fluid from the fluid supply source to the processing chamber in a predetermined pressure without boosting the pressure of the substrate processing liquid; a boosted pressure supplying path configured to boost the pressure of the substrate processing fluid from the fluid supply source into a predetermined pressure by a booster mechanism and supply the pressure boosted substrate processing fluid to the processing chamber; and a control unit configured to switch over the constant pressure supplying path and the boosted pressure supplying path.
    Type: Grant
    Filed: April 19, 2017
    Date of Patent: August 14, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Gentaro Goshi, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
  • Patent number: 9953840
    Abstract: A substrate processing method according to the present disclosure includes: a liquid processing process of supplying a processing liquid to a substrate having a surface on which a pattern having a plurality of convex portions is formed; a drying process of removing the processing liquid existing on the surface of the substrate dry the substrate, and a separating process of separating a sticking portion between adjacent ones of the convex portions after the drying process.
    Type: Grant
    Filed: December 7, 2016
    Date of Patent: April 24, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Hiroshi Marumoto, Hisashi Kawano, Hiromi Kiyose, Mitsunori Nakamori, Kazuyuki Mitsuoka
  • Patent number: 9881784
    Abstract: Disclosed is a substrate processing method. The method includes: supplying a rinse liquid, IPA, a first fluorine-containing organic solvent, a second fluorine-containing organic solvent to a wafer within an outer chamber of a liquid processing unit; conveying the wafer to a supercritical processing unit container; and supplying a supercritical processing fluorine-containing organic solvent in a supercritical high-pressure fluid state to the wafer within the supercritical processing unit container. At least during the supply of the IPA, a low-humidity N2 gas is supplied into the outer chamber so that the inside of the outer chamber is formed as a low-humidity N2 gas atmosphere, and thus moisture absorption into the IPA is prevented.
    Type: Grant
    Filed: October 14, 2015
    Date of Patent: January 30, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Hiroki Ohno, Keiji Tanouchi, Kazuyuki Mitsuoka, Takehiko Orii, Takayuki Toshima
  • Publication number: 20170320107
    Abstract: The present disclosure provides a substrate processing apparatus including: a processing chamber configured to process a substrate; a fluid supply source configured to supply a substrate processing fluid used in processing for the substrate in a predetermined pressure; a constant pressure supplying path configured to supply the substrate processing fluid from the fluid supply source to the processing chamber in a predetermined pressure without boosting the pressure of the substrate processing liquid; a boosted pressure supplying path configured to boost the pressure of the substrate processing fluid from the fluid supply source into a predetermined pressure by a booster mechanism and supply the pressure boosted substrate processing fluid to the processing chamber; and a control unit configured to switch over the constant pressure supplying path and the boosted pressure supplying path.
    Type: Application
    Filed: April 19, 2017
    Publication date: November 9, 2017
    Inventors: Gentaro GOSHI, Kazuyuki MITSUOKA, Gen YOU, Hiroki OHNO, Takehiko ORII, Takayuki TOSHIMA
  • Publication number: 20170186620
    Abstract: A substrate processing method according to the present disclosure includes: a liquid processing process of supplying a processing liquid to a substrate having a surface on which a pattern having a plurality of convex portions is formed; a drying process of removing the processing liquid existing on the surface of the substrate dry the substrate, and a separating process of separating a sticking portion between adjacent ones of the convex portions after the drying process.
    Type: Application
    Filed: December 7, 2016
    Publication date: June 29, 2017
    Inventors: Hiroshi Marumoto, Hisashi Kawano, Hiromi Kiyose, Mitsunori Nakamori, Kazuyuki Mitsuoka
  • Patent number: 9662685
    Abstract: The present disclosure provides a substrate processing apparatus including: a processing chamber configured to process a substrate; a fluid supply source configured to supply a substrate processing fluid used in processing for the substrate in a predetermined pressure; a constant pressure supplying path configured to supply the substrate processing fluid from the fluid supply source to the processing chamber in a predetermined pressure without boosting the pressure of the substrate processing liquid; a boosted pressure supplying path configured to boost the pressure of the substrate processing fluid from the fluid supply source into a predetermined pressure by a booster mechanism and supply the pressure boosted substrate processing fluid to the processing chamber; and a control unit configured to switch over the constant pressure supplying path and the boosted pressure supplying path.
    Type: Grant
    Filed: June 5, 2013
    Date of Patent: May 30, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Gentaro Goshi, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
  • Publication number: 20170076938
    Abstract: A substrate processing method including: conveying a workpiece with a puddle of a dry preventing liquid into a supercritical processing unit container; and supplying a supercritical processing fluid to an outside or a top side of the workpiece within the supercritical processing unit container, or a top side of the workpiece outside the supercritical processing unit container. The supercritical processing fluid in liquid state or a mixed liquid of the dry preventing liquid and the supercritical processing fluid is heated to be placed in a supercritical state in the supercritical processing unit container. The inside of the supercritical processing unit container is supplied with N2 gas in advance and pressurized before the supercritical processing fluid in liquid state or the mixed liquid of the dry preventing liquid and the supercritical processing fluid is heated in the supercritical processing unit container.
    Type: Application
    Filed: September 9, 2016
    Publication date: March 16, 2017
    Inventor: Kazuyuki Mitsuoka
  • Patent number: 9583330
    Abstract: A supercritical drying method for a semiconductor substrate is disclosed. The method may include introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method may also include performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
    Type: Grant
    Filed: May 21, 2014
    Date of Patent: February 28, 2017
    Assignee: Tokyo Electron Limited
    Inventors: Linan Ji, Hidekazu Hayashi, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Publication number: 20170011907
    Abstract: Disclosed is a substrate processing method including: supplying a first solvent including a fluorine-free organic solvent, to a workpiece; supplying a second solvent including a fluorine-containing organic solvent that is not dissolved with the first solvent at a normal temperature, and is dissolved with the first solvent at a temperature higher than the normal temperature; and replacing the first solvent with the second solvent while dissolving the first solvent and the second solvent by heating the first solvent and the second solvent to a dissolution temperature or higher.
    Type: Application
    Filed: July 5, 2016
    Publication date: January 12, 2017
    Inventors: Kazuyuki Mitsuoka, Hiroki Ohno, Gentaro Goshi, Hisashi Kawano
  • Publication number: 20160118242
    Abstract: Disclosed is a substrate processing method. The method includes: supplying a rinse liquid, IPA, a first fluorine-containing organic solvent, a second fluorine-containing organic solvent to a wafer within an outer chamber of a liquid processing unit; conveying the wafer to a supercritical processing unit container; and supplying a supercritical processing fluorine-containing organic solvent in a supercritical high-pressure fluid state to the wafer within the supercritical processing unit container. At least during the supply of the IPA, a low-humidity N2 gas is supplied into the outer chamber so that the inside of the outer chamber is formed as a low-humidity N2 gas atmosphere, and thus moisture absorption into the IPA is prevented.
    Type: Application
    Filed: October 14, 2015
    Publication date: April 28, 2016
    Inventors: Hiroki Ohno, Keiji Tanouchi, Kazuyuki Mitsuoka, Takehiko Orii, Takayuki Toshima
  • Publication number: 20150258584
    Abstract: Disclosed is a separation and regeneration apparatus which includes a buffer tank configured to generate a mixed liquid which includes a first fluorine-containing organic solvent having a first boiling point, and a second fluorine-containing organic solvent having a second boiling point higher than the first boiling point; a distillation tank configured to heat the mixed liquid up to a temperature between the first boiling point and the second boiling point so as to separate the mixed liquid into the first fluorine-containing organic solvent in a gas state and the second fluorine-containing organic solvent in a liquid state; a first tank configured to liquefy and store the first fluorine-containing organic solvent in the gas state which is sent from the distillation tank; and a second tank configured to store the second fluorine-containing organic solvent in the liquid state which is sent from the distillation tank.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 17, 2015
    Inventors: Kazuyuki Mitsuoka, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
  • Publication number: 20150258466
    Abstract: Disclosed is a separation and regeneration apparatus including: a mixed drainage liquid tank (mixed liquid generating unit) configured to generate a mixed liquid which includes a low-specific-gravity liquid insoluble in a fluorine-containing organic solvent, a first fluorine-containing organic solvent having a first boiling point, and a second fluorine-containing organic solvent having a second boiling point higher than the first boiling point; a distillation tank configured to separate the first fluorine-containing organic solvent and the second fluorine-containing organic solvent in the mixed liquid into the first fluorine-containing organic solvent in a gas state and the second fluorine-containing organic solvent in a liquid state; a first tank configured to liquefy and store the first fluorine-containing organic solvent from the distillation tank; and a second tank configured to store the second fluorine-containing organic solvent from the distillation tank.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 17, 2015
    Inventors: Kazuyuki Mitsuoka, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
  • Publication number: 20150258465
    Abstract: Disclosed is a separation and regeneration apparatus including: a supercritical processing unit configured to generate a mixed gas including a first fluorine-containing organic solvent having a first boiling point and a second fluorine-containing organic solvent having a second boiling point lower than the first boiling point; and a distillation tank configured to store hot water having a temperature between the first boiling point and the second boiling point, in which the mixed gas is input into the hot water to be separated into the first fluorine-containing organic solvent in a liquid state and the second fluorine-containing organic solvent in a gas state, in which an introduction line configured to guide the mixed gas from the supercritical processing unit to the distillation tank is provided and a distal end of the introduction line is disposed in the hot water.
    Type: Application
    Filed: March 11, 2015
    Publication date: September 17, 2015
    Inventors: Kazuyuki Mitsuoka, Hiroki Ohno, Takehiko Orii, Takayuki Toshima
  • Patent number: 8771429
    Abstract: According to one embodiment, a supercritical drying method for a semiconductor substrate, comprises introducing the semiconductor substrate into a chamber in a state, a surface of the semiconductor substrate being wet with alcohol, substituting the alcohol on the semiconductor substrate with a supercritical fluid of carbon dioxide by impregnating the semiconductor substrate to the supercritical fluid in the chamber, and discharging the supercritical fluid and the alcohol from the chamber and reducing a pressure inside the chamber. The method further comprises performing a baking treatment by supplying an oxygen gas or an ozone gas to the chamber after the reduction of the pressure inside the chamber.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: July 8, 2014
    Assignees: Kabushiki Kaisha Toshiba, Tokyo Electron Limited
    Inventors: Linan Ji, Hidekazu Hayashi, Hiroshi Tomita, Hisashi Okuchi, Yohei Sato, Takayuki Toshima, Mitsuaki Iwashita, Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii
  • Publication number: 20140145390
    Abstract: In the present disclosure, the high-pressure chamber includes a chamber main body including a flat rectangular parallelepiped block of a metal which is formed with a flat cavity that serves as a substrate processing space in which a processing using a high-pressure fluid is performed on a substrate, and the substrate processing space being formed by machining the block from one of faces of the block other than the widest face towards another face opposing thereto. In a case where the cavity is constituted as a through hole, the though hole is provided with a cover configured to open or close the cavity on one side of the through hole, and a second block configured to air-tightly seal the cavity on the other side.
    Type: Application
    Filed: November 21, 2013
    Publication date: May 29, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Kazuyuki Mitsuoka, Gen You, Hiroki Ohno, Takehiko Orii, Takayuki Toshima, Hiroaki Inadomi
  • Publication number: 20140020721
    Abstract: A substrate processing method and apparatus for preventing evaporation of an anti-drying fluorine-containing organic solvent from a substrate during transportation of the substrate into a processing container and can prevent decomposition of a fluorine-containing organic solvent in the processing container. A substrate, the surface of which is covered with a first fluorine-containing organic solvent, is carried into a processing container. The first fluorine-containing organic solvent is removed from the substrate surface by forming a high-pressure fluid atmosphere of a mixture of the first fluorine-containing organic solvent and a second fluorine-containing organic solvent, having a lower boiling point than the first fluorine-containing organic solvent, in the processing container e.g. by supplying a high-pressure fluid of the second fluorine-containing organic solvent into the processing container.
    Type: Application
    Filed: July 15, 2013
    Publication date: January 23, 2014
    Inventors: Hidekazu HAYASHI, Yohei SATO, Hisashi OKUCHI, Hiroshi TOMITA, Kazuyuki MITSUOKA, Gen YOU, Hiroki OHNO, Takehiko ORII, Takayuki TOSHIMA