Patents by Inventor Kazuyuki Tohji

Kazuyuki Tohji has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190322531
    Abstract: Disclosed is a carbon material, such as a carbon nanotube, into which a boron atom and/or a phosphorus atom is/are introduced while maintaining its characteristic structures and functions and a method for producing the same. The carbon material of the present invention is one in which a boron atom and/or a phosphorus atom is/are introduced into part of carbon atoms composing the carbon material, and can be produced by a method for producing a carbon material including the steps of: bringing a carbon material into contact with a fluorination treatment gas containing a fluorine-containing gas, thereby subjecting a surface of the carbon material to fluorination treatment; and bringing the carbon material after the fluorination treatment into contact with a boronization treatment gas containing a boron-containing gas, thereby subjecting to boronization treatment and/or into contact with a phosphorization treatment gas containing a phosphorus-containing gas, thereby subjecting to phosphorization treatment.
    Type: Application
    Filed: June 9, 2017
    Publication date: October 24, 2019
    Inventors: Kazuyuki TOHJI, Yoshinori SATO, Koji YOKOYAMA, Kazutaka HIRANO, Yoshinori SATO
  • Patent number: 10256464
    Abstract: A method for producing a negative electrode active material for a lithium ion secondary battery, comprising a step of charging either silicon and copper (II) oxide or silicon and copper metal in a pulverization device, pulverizing either the silicon and copper (II) oxide or silicon and copper metal, and simultaneously mixing either silicon and copper (II) oxide or silicon and copper metal thus pulverized. A negative electrode active material for a lithium ion secondary battery is produced by the method.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: April 9, 2019
    Assignees: TOHOKU UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Norihiro Shimoi, Kazuyuki Tohji, Yasumitsu Tanaka, Qiwu Zhang, Hiroyuki Kai
  • Patent number: 10153495
    Abstract: Provided is a method for producing a catalyst, including: (i) mixing a core metal salt that serves as a material for a core metal, and a complexing agent (a) to produce a core metal complex solution containing a core metal complex; (ii) mixing a shell metal salt that serves as a material for a shell metal, and a complexing agent (b) to produce a shell metal complex solution containing a shell metal complex; (iii) mixing a carbon powder and a dispersing agent to produce a carbon powder dispersion; (iv) mixing the core metal complex solution, the shell metal complex solution, and the carbon powder dispersion, and reducing the core metal complex and the shell metal complex on the carbon powder by using at least one reducing agent; and (v) drying and baking at a predetermined temperature the carbon powder resulting from Step (iv), said carbon powder having a core-shell structure that includes the core metal and the shell metal.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: December 11, 2018
    Assignee: Panasonic Corporation
    Inventors: Shuzo Tsuchida, Yasushi Taniguchi, Ryouhei Seki, Yasuhiro Ueyama, Hideyuki Takahashi, Shun Yokoyama, Kazuyuki Tohji
  • Patent number: 10046971
    Abstract: A nitrogen-containing carbon material to the present invention comprises a carbon material having a carbon skeleton formed of carbon atoms and nitrogen atoms introduced into the carbon material, wherein part of carbon atoms in the carbon skeleton are substituted with nitrogen atoms. The nitrogen-containing carbon material according to the present invention can be produced by a production method including the steps of bringing the carbon material into contact with a first treatment gas containing a fluorine-containing gas to subject a surface of the carbon material to a fluorination treatment; and bringing the carbon material after being subjected to the fluorination treatment into contact with a second treatment gas containing a nitrogen-containing gas with heating to perform a nitriding treatment.
    Type: Grant
    Filed: December 16, 2015
    Date of Patent: August 14, 2018
    Assignees: Stella Chemifa Corporation, Tohoku University
    Inventors: Kazuyuki Tohji, Yoshinori Sato, Koji Yokoyama, Kazutaka Hirano, Yoshinori Sato
  • Patent number: 10044033
    Abstract: A negative electrode active material for a lithium ion secondary battery, comprising silicon, copper and oxygen as major constitutional elements, the negative electrode active material for a lithium ion secondary battery, containing fine particles of silicon having an average crystallite diameter (Dx) measured by an X-ray diffractometry of 50 nm or less, and having elemental ratios, expressed by molar ratios, Cu/(Si+Cu+O) and O/(Si+Cu+O) of from 0.02 to 0.30, wherein the negative electrode active material contains an intermetallic compound of silicon and copper.
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: August 7, 2018
    Assignees: TOHOKU UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Norihiro Shimoi, Kazuyuki Tohji, Yasumitsu Tanaka, Qiwu Zhang, Hiroyuki Kai
  • Patent number: 9929412
    Abstract: A manufacturing method of a supported platinum catalyst, includes: generating a platinum group salt solution using platinum group salts and a complexing agent; mixing the platinum group salt solution and a carbon powder dispersion in which carbon powder is dispersed; and adding a reducing agent to a mixed solution of the platinum group salt solution and the carbon powder dispersion, and reducing the platinum group salts to allow the platinum group particles to be supported on the carbon powder.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: March 27, 2018
    Assignee: Panasonic Corporation
    Inventors: Yasuhiro Ueyama, Toshiyuki Kojima, Yasushi Taniguchi, Kazunori Kubota, Hideyuki Takahashi, Shun Yokoyama, Kazuyuki Tohji, Shuzo Tsuchida
  • Publication number: 20170244111
    Abstract: Provided is a method for producing a catalyst, including: (i) mixing a core metal salt that serves as a material for a core metal, and a complexing agent (a) to produce a core metal complex solution containing a core metal complex; (ii) mixing a shell metal salt that serves as a material for a shell metal, and a complexing agent (b) to produce a shell metal complex solution containing a shell metal complex; (iii) mixing a carbon powder and a dispersing agent to produce a carbon powder dispersion; (iv) mixing the core metal complex solution, the shell metal complex solution, and the carbon powder dispersion, and reducing the core metal complex and the shell metal complex on the carbon powder by using at least one reducing agent; and (v) drying and baking at a predetermined temperature the carbon powder resulting from Step (iv), said carbon powder having a core-shell structure that includes the core metal and the shell metal.
    Type: Application
    Filed: February 3, 2017
    Publication date: August 24, 2017
    Inventors: SHUZO TSUCHIDA, YASUSHI TANIGUCHI, RYOUHEI SEKI, YASUHIRO UEYAMA, HIDEYUKI TAKAHASHI, SHUN YOKOYAMA, KAZUYUKI TOHJI
  • Publication number: 20170187034
    Abstract: A method for producing a negative electrode active material for a lithium ion secondary battery, comprising a step of charging either silicon and copper (II) oxide or silicon and copper metal in a pulverization device, pulverizing either the silicon and copper (II) oxide or silicon and copper metal, and simultaneously mixing either silicon and copper (II) oxide or silicon and copper metal thus pulverized. A negative electrode active material for a lithium ion secondary battery is produced by the method.
    Type: Application
    Filed: March 15, 2017
    Publication date: June 29, 2017
    Inventors: NORIHIRO SHIMOI, KAZUYUKI TOHJI, YASUMITSU TANAKA, QIWU ZHANG, HIROYUKI KAI
  • Publication number: 20170187037
    Abstract: A negative electrode active material for a lithium ion secondary battery, comprising silicon, copper and oxygen as major constitutional elements, the negative electrode active material for a lithium ion secondary battery, containing fine particles of silicon having an average crystallite diameter (Dx) measured by an X-ray diffractometry of 50 nm or less, and having elemental ratios, expressed by molar ratios, Cu/(Si+Cu+O) and O/(Si+Cu+O) of from 0.02 to 0.30, wherein the negative electrode active material contains an intermetallic compound of silicon and copper.
    Type: Application
    Filed: March 15, 2017
    Publication date: June 29, 2017
    Inventors: NORIHIRO SHIMOI, KAZUYUKI TOHJI, YASUMITSU TANAKA, QIWU ZHANG, HIROYUKI KAI
  • Patent number: 9634327
    Abstract: In the case where a silicon substance having a high theoretical capacity as a negative electrode active material for a lithium ion secondary battery is used as a negative electrode active material, such a negative electrode active material is provided that has a high initial battery capacity and suffers less deterioration in performance even when many cycles of charge and discharge are repeated. A lithium ion secondary battery using the negative electrode active material is provided. Silicon and copper (II) oxide, or silicon, metallic copper and water are pulverized and simultaneously mixed in a pulverization device, thereby providing a negative electrode active material that has good cycle characteristics and a large battery capacity.
    Type: Grant
    Filed: July 8, 2015
    Date of Patent: April 25, 2017
    Assignees: TOHOKU UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Norihiro Shimoi, Kazuyuki Tohji, Yasumitsu Tanaka, Qiwu Zhang, Hiroyuki Kai
  • Publication number: 20160372759
    Abstract: A manufacturing method of a supported platinum catalyst, includes: generating a platinum group salt solution using platinum group salts and a complexing agent; mixing the platinum group salt solution and a carbon powder dispersion in which carbon powder is dispersed; and adding a reducing agent to a mixed solution of the platinum group salt solution and the carbon powder dispersion, and reducing the platinum group salts to allow the platinum group particles to be supported on the carbon powder.
    Type: Application
    Filed: April 29, 2016
    Publication date: December 22, 2016
    Inventors: YASUHIRO UEYAMA, TOSHIYUKI KOJIMA, YASUSHI TANIGUCHI, KAZUNORI KUBOTA, HIDEYUKI TAKAHASHI, SHUN YOKOYAMA, KAZUYUKI TOHJI, SHUZO TSUCHIDA
  • Publication number: 20160167968
    Abstract: A nitrogen-containing carbon material to the present invention comprises a carbon material having a carbon skeleton formed of carbon atoms and nitrogen atoms introduced into the carbon material, wherein part of carbon atoms in the carbon skeleton are substituted with nitrogen atoms. The nitrogen-containing carbon material according to the present invention can be produced by a production method including the steps of bringing the carbon material into contact with a first treatment gas containing a fluorine-containing gas to subject a surface of the carbon material to a fluorination treatment; and bringing the carbon material after being subjected to the fluorination treatment into contact with a second treatment gas containing a nitrogen-containing gas with heating to perform a nitriding treatment.
    Type: Application
    Filed: December 16, 2015
    Publication date: June 16, 2016
    Inventors: Kazuyuki Tohji, Yoshinori Sato, Koji Yokoyama, Kazutaka Hirano, Yoshinori Sato
  • Patent number: 9324556
    Abstract: A field electron emission film that is capable of being operated with low electric power and enhancing the uniformity in luminance within the light emission surface contains from 60 to 99.9% by mass of tin-doped indium oxide and from 0.1 to 20% by mass of carbon nanotubes. The film has a structure wherein grooves having a width in a range of from 0.1 to 50 mm are formed in a total extension of 2 mm or more per 1 mm2 on a surface of the film, and carbon nanotubes are exposed on a wall surface of the grooves. After forming an ITO film containing carbon nanotubes on a substrate, grooves are formed on a surface of the ITO film, and the end portions of the carbon nanotubes exposed to the wall surface of the grooves are designated as an emitter.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: April 26, 2016
    Assignees: TOHOKU UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Norihiro Shimoi, Kazuyuki Tohji, Yasumitsu Tanaka, Hiroyuki Kai
  • Patent number: 9296613
    Abstract: The invention is directed to a carbon material dispersion, including: a fluorinated carbon material having a fluorinated surface formed by bringing a treatment gas with a fluorine concentration of 0.01 to 100 vol % into contact with a carbon material under conditions at 150 to 600° C.; and a dispersion medium in which the fluorinated carbon material is dispersed.
    Type: Grant
    Filed: December 18, 2009
    Date of Patent: March 29, 2016
    Assignees: NATIONAL UNIVERSITY CORPORATION TOHOKU UNIVERSITY, STELLA CHEMIFA CORPORATION
    Inventors: Kazuyuki Tohji, Yoshinori Sato, Shinji Hashiguchi, Kazutaka Hirano
  • Publication number: 20150325853
    Abstract: [Problem] In the case where a silicon substance having a high theoretical capacity as a negative electrode active material for a lithium ion secondary battery is used as a negative electrode active material, such a negative electrode active material is provided that has a high initial battery capacity and suffers less deterioration in performance even when many cycles of charge and discharge are repeated. A lithium ion secondary battery using the negative electrode active material is provided. [Solution] Silicon and copper (II) oxide, or silicon, metallic copper and water are pulverized and simultaneously mixed in a pulverization device, thereby providing a negative electrode active material that has good cycle characteristics and a large battery capacity.
    Type: Application
    Filed: July 8, 2015
    Publication date: November 12, 2015
    Inventors: Norihiro SHIMOI, Kazuyuki TOHJI, Yasumitsu TANAKA, Qiwu ZHANG, Hiroyuki KAI
  • Publication number: 20150228471
    Abstract: A field electron emission film that is capable of being operated with low electric power and enhancing the uniformity in luminance within the light emission surface contains from 60 to 99.9% by mass of tin-doped indium oxide and from 0.1 to 20% by mass of carbon nanotubes. The film has a structure wherein grooves having a width in a range of from 0.1 to 50 mm are formed in a total extension of 2 mm or more per 1 mm2 on a surface of the film, and carbon nanotubes are exposed on a wall surface of the grooves. After forming an ITO film containing carbon nanotubes on a substrate, grooves are formed on a surface of the ITO film, and the end portions of the carbon nanotubes exposed to the wall surface of the grooves are designated as an emitter.
    Type: Application
    Filed: August 12, 2013
    Publication date: August 13, 2015
    Inventors: Norihiro Shimoi, Kazuyuki Tohji, Yasumitsu Tanaka, Hiroyuki Kai
  • Patent number: 8858909
    Abstract: There is provided a high-purity carbon nanotube, which can be produced with simple purification by causing graphite to be hardly contained in crude soot obtained immediately after being synthesized by arc-discharge, and a method for producing the same. Soot containing carbon nanotubes produced by arc-discharge using an anode which contains amorphous carbon as a main component is heated at a temperature of not lower than 350° C. to be burned and oxidized, immersed in an acid, heated at a temperature, which is not lower than the heating temperature in the previous burning and oxidation and which is not lower than 500° C., to be burned and oxidized, and immersed in an acid again.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: October 14, 2014
    Assignees: Dowa Holdings Co., Ltd., Tohoku University
    Inventors: Yoshinori Sato, Kazuyuki Tohji, Masaru Namura
  • Patent number: 8420165
    Abstract: Provided is a method for producing a silver fine powder covered with an organic substance, which comprises a step of mixing (i) a dispersion of silver particles covered with a protective material X1 that comprises an organic compound having an unsaturated bond and having a molecular weight of from 150 to 1000 in a liquid organic medium A, (ii) a protective material X2 that comprises an organic compound of which the number of the carbon atoms constituting the carbon skeleton is smaller than that of the organic compound to constitute the protective material X1, and (iii) a liquid organic medium B of which the ability to dissolve the protective material X1 therein is higher than that of the liquid organic medium A, thereby promoting the dissolution of the protective material X1 in the liquid organic medium B and the adhesion of the protective material X2 to the surface of the silver particles.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 16, 2013
    Assignees: Dowa Electronics Materials Co., Ltd., Tokohu University
    Inventors: Kimitaka Sato, Balachandran Jeyadevan, Kazuyuki Tohji
  • Patent number: 8157889
    Abstract: A magnetic metal powder having fluidity is provided which is composed of FePt nanoparticles synthesized by the polyol synthesis method that possess fct (face-centered tetragonal) structure and exhibit crystal magnetic anisotropy from immediately after synthesis. Specifically, there is provided a magnetic metal powder having fluidity which is composed of magnetic metal particles whose main components and the contents thereof are represented by the following general formula (1): [TXM1?X]YZ1?Y??(1), where T is one or both of Fe and Co, M is one or both of Pt and Pd, Z is at least one member selected from the group composed of Ag, Cu, Bi, Sb, Pb and Sn, X represents 0.3˜0.7, and Y represents 0.7˜1.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: April 17, 2012
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventor: Kazuyuki Tohji
  • Publication number: 20120083408
    Abstract: There is provided a high-purity carbon nanotube, which can be produced with simple purification by causing graphite to be hardly contained in crude soot obtained immediately after being synthesized by arc-discharge, and a method for producing the same. Soot containing carbon nanotubes produced by arc-discharge using an anode which contains amorphous carbon as a main component is heated at a temperature of not lower than 350° C. to be burned and oxidized, immersed in an acid, heated at a temperature, which is not lower than the heating temperature in the previous burning and oxidation and which is not lower than 500° C., to be burned and oxidized, and immersed in an acid again.
    Type: Application
    Filed: May 28, 2010
    Publication date: April 5, 2012
    Applicants: TOHOKU UNIVERSITY, DOWA HOLDINGS CO., LTD.
    Inventors: Yoshinori Sato, Kazuyuki Tohji, Masaru Namura