Patents by Inventor Ke-Chin Lee

Ke-Chin Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20100259942
    Abstract: An LED lamp has a metal housing, a sintered heat pipe and an LED. The metal housing has an outer surface, an inner surface, a bottom and an opening defined by an inner edge. The sintered heat pipe engages the inner surface and the bottom and the inner edge of the metal housing. The LED is attached to a flattened area of the bottom portion of the sintered heat pipe. The sintered heat pipe rapidly transports heat generated by the LED to the metal housing which then transfers heat to the environment. The sintered heat pipe makes effective heat transportation possible and allows the use of high-power LEDs or multiple LED's within one lamp.
    Type: Application
    Filed: June 17, 2010
    Publication date: October 14, 2010
    Inventor: Ke-Chin Lee
  • Publication number: 20100181593
    Abstract: A LED chip package including a two-phase-flow heat transfer device, at least one LED chip, a metal lead frame and a package material. The two-phase-flow heat transfer device has at least one flat surface. The LED chip is directly or indirectly bonded or adhered to the flat surface of the two-phase-flow heat transfer device. Heat generated by the LED chip can be easily conducted away from the LED chip by the two-phase-flow heat transfer device such as a heat pipe, a vapor chamber and the like so as to prevent heat from accumulating in the LED chip thereby extending the service duration of the LED chip and to prevent the LED chip from deterioration of the light emitting performance caused by the accumulation of heat.
    Type: Application
    Filed: October 6, 2009
    Publication date: July 22, 2010
    Applicant: Yeh-Chiang Technology Corp.
    Inventor: Ke-Chin Lee
  • Publication number: 20100177522
    Abstract: An LED lamp has a base, a tubular conductor, a bulb and at least one LED. The base is metallic and has an electrical connector. The tubular conductor is filled with a fluid and mounted on the base and has a distal end and a proximal end. The bulb is pellucid and connected to the base. The at least one LED is mounted on the distal end of the tubular conductor and electrically connected to the connector of the base. The fluid in the tubular conductor may vaporize close to operating temperatures of the LED so transports heat away from the LED quickly and efficiently so allowing high power or multiple LEDs to be implemented, so improving brightness of the LED lamp and commercial applications.
    Type: Application
    Filed: January 15, 2009
    Publication date: July 15, 2010
    Applicant: YEH-CHIANG TECHNOLOGY CORP.
    Inventor: Ke-Chin LEE
  • Publication number: 20100177521
    Abstract: An LED lamp has a metal housing, a heat pipe and an LED. The metal housing has an outer surface, an inner surface, a bottom and an opening defined by an inner edge. The heat pipe engages the inner surface, the bottom and the inner edge of the metal housing. The LED is attached to the bottom portion of the heat pipe. The heat pipe rapidly transports heat generated by the LED to the metal housing which then transfers heat to the environment. The heat pipe makes effective heat transportation possible and allows the use of high-power LEDs or multiple LED's within one lamp.
    Type: Application
    Filed: January 14, 2009
    Publication date: July 15, 2010
    Inventor: Ke-Chin Lee
  • Patent number: 7581878
    Abstract: The measuring system generates a temperature difference between a heating terminal and a terminal conductive device by setting the temperature of a metal heated block at the heating terminal and the temperature of a heat dissipating water jacket at a heat dissipating terminal, and judges the thermal conductive capability of the thermal conductive device by comparing the cooling speed of the metal heating bock to obtain a relative power value according to the variation of heat quantity of the metal heated block in practical temperature reduction process. The maximum thermal conductive quantity (Qmax value) of the thermal conductive device can be rapidly obtained by parameter conversion with respect to the maximum power value. In the case of confirming the cooling curve (cooling speed) of a standard sample, the object of screening the thermal conductive efficiencies of the thermal conductive devices can be achieved by using the cooling curve.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: September 1, 2009
    Assignee: Yeh-Chiang Technology Corp.
    Inventors: Ke-Chin Lee, Chen-Chuan Lin, Chi-Te Chin, Li-Kai Wu
  • Publication number: 20070289134
    Abstract: A method of making a length of heat conduction pipe from a long conduction pipe filled with heat transfer medium in vacuum environment comprises: a material preparation step in which a long heat conduction pipe with predetermined length sealed at both ends is prepared, a squelching and cutting step in which squelching and cutting is conducted on pre-determined point of said long heat conduction pipe in vacuum environment; a sealing step by which the cut end of said long heat conduction pipe is brazed and sealed in vacuum. There also provides an equipment for performing the method.
    Type: Application
    Filed: July 12, 2006
    Publication date: December 20, 2007
    Applicant: YEH-CHIANG TECHNOLOGY CORP.
    Inventors: Ke-Chin Lee, Chih-Sheng Wang, Chi-Te Chin
  • Publication number: 20070047614
    Abstract: The measuring system generates a temperature difference between a heating terminal and a terminal conductive device by setting the temperature of a metal heated block at the heating terminal and the temperature of a heat dissipating water jacket at a heat dissipating terminal, and judges the thermal conductive capability of the thermal conductive device by comparing the cooling speed of the metal heating bock to obtain a relative power value according to the variation of heat quantity of the metal heated block in practical temperature reduction process. The maximum thermal conductive quantity (Qmax value) of the thermal conductive device can be rapidly obtained by parameter conversion with respect to the maximum power value. In the case of confirming the cooling curve (cooling speed) of a standard sample, the object of screening the thermal conductive efficiencies of the thermal conductive devices can be achieved by using the cooling curve.
    Type: Application
    Filed: December 22, 2005
    Publication date: March 1, 2007
    Inventors: Ke-Chin Lee, Chen-Chuan Lin, Chi-Te Chin, Li-Kai Wu