Patents by Inventor Kea-Tiong Tang

Kea-Tiong Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170026209
    Abstract: The present invention discloses a demodulating method for a demodulating circuit. The demodulating method comprises a step of utilizing a wave-shaping voltage step-down circuit to perform a wave-shaping process for a modulating input signal. A separate circuit of modulating input signal is filtering data zero of the modulating input signal and reserving data one of the modulating input signal. A triggering circuit of data recover is used to start the count of data span, until the data count is completed. A data recover circuit is used to recover the data.
    Type: Application
    Filed: January 13, 2016
    Publication date: January 26, 2017
    Inventors: Yu-Po LIN, Kea-Tiong TANG, Hsin CHEN
  • Publication number: 20170003699
    Abstract: The present invention discloses a feedback type voltage regulator, including a voltage reference circuit for providing a reference voltage, distributed series feedback amplifiers electrically coupled to the voltage reference circuit and a power transistor which gate is electrically connected to the distributed series feedback amplifiers. The distributed series feedback amplifiers comprises three set of amplifiers serially connected with each other, wherein the relation of the gain of the first amplifier (A1), the second amplifier (A2), and the third amplifier (A3) is A1>A2>A3, wherein the relation of the bandwidth of the first amplifier (B1), the second amplifier (B2), and the third amplifier (B3) is B1<B2<B3.
    Type: Application
    Filed: September 6, 2015
    Publication date: January 5, 2017
    Inventors: Yu-Po LIN, Kea-Tiong TANG
  • Publication number: 20160324479
    Abstract: A handheld gas sensing device and sensing method thereof are provided. The handheld gas sensing device includes a plurality of gas sensing chips and a gas collector. The plurality of gas sensing chips respectively include a sensing array, a sensing interface circuit, a microcontroller, and a memory. The gas signal is determined by the gas adsorption of the sensing array. The gas signal is converted to a visible operand by using the sensing interface circuit. The visible operand is projected to a hidden operand by utilizing the calculation of Continuous Restricted Boltzmnan Machine (CRBM). The plurality of gas sensing chips are connected with each other to do the multi-layer calculation of CRBM. The probability of the to-be-detected gas is obtained. The result is recorded in the memory.
    Type: Application
    Filed: August 20, 2015
    Publication date: November 10, 2016
    Inventors: Kea-Tiong TANG, Shih-Wen CHIU, Chung-Hung SHIH, Li-Chun WANG, Hsin CHEN, Yi-Wen LIU, Chia-Min YANG, Da-Jeng YAO
  • Patent number: 9448217
    Abstract: A gas sensing system includes an air intake hole which comprises a plurality of micro-flow channels, a replaceable sensor for receiving an air from the air intake hole and detecting the received air, and a processing unit coupled to the replaceable sensor and doing determination for the component of the air according to a detection result of the replaceable sensor. Wherein, the replaceable sensor includes a plurality of sensing chips arranged in an array and each sensing chip is coated with a sensing thin film separately to detect a different gas.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: September 20, 2016
    Assignee: NATIONAL TSING HUA UNIVERSITY
    Inventors: Hsiang-Chiu Wu, Shih-Wen Chiu, Ting-I Chou, Chia-Min Yang, Da-Jeng Yao, Hsin Chen, Kea-Tiong Tang
  • Patent number: 9125590
    Abstract: A medical ventilator capable of early detecting and recognizing types of pneumonia, a gas recognition chip, and a method for recognizing gas thereof are disclosed. The gas recognition chip of the medical ventilator comprises a sensor array, a sensor interface circuit, a stochastic neural network chip, a memory and a microcontroller. The sensor array receives a plurality of multiple types of gases to produce odor signals corresponding to each type of gas. The sensor interface circuit analyzes the odor signals to produce gas pattern signals corresponding to each type of gas. The stochastic neural network chip amplifies the differences between the gas pattern signals and performs dimensional reduction on the gas pattern signals to aid the analysis. The memory stores training data. The microcontroller performs a mixed gas recognizing algorithm to early detect and recognize the type of the pneumonia according to the gas training data.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: September 8, 2015
    Assignee: National Tsing Hua University
    Inventors: Kea-Tiong Tang, Chung-Hung Shih, Li-Chun Wang, Hsin Chen, Yi-Wen Liu, Jyuo-Min Shyu, Chia-Min Yang, Da-Jeng Yao
  • Publication number: 20150136600
    Abstract: A gas sensing system includes an air intake hole which comprises a plurality of micro-flow channels, a replaceable sensor for receiving an air from the air intake hole and detecting the received air, and a processing unit coupled to the replaceable sensor and doing determination for the component of the air according to a detection result of the replaceable sensor. Wherein, the replaceable sensor includes a plurality of sensing chips arranged in an array and each sensing chip is coated with a sensing thin film separately to detect a different gas.
    Type: Application
    Filed: March 3, 2014
    Publication date: May 21, 2015
    Applicant: National Tsing Hua University
    Inventors: Hsiang-Chiu Wu, Shih-Wen Chiu, Ting-I Chou, Chia-Min Yang, Da-Jeng Yao, Hsin Chen, Kea-Tiong Tang
  • Patent number: 8551310
    Abstract: There is disclosed a method for making a nano-composite gas sensor. At first, there is provided a substrate. Then, electrodes are provided on the substrate in an array. Finally, a gas-sensing membrane is provided on the electrodes. The gas-sensing membrane includes a nano-conductive film and a peptide film.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: October 8, 2013
    Assignee: Chung-Shan Institute of Science and Technology, Armaments Bureau, Dept. of National Defense
    Inventors: Li-Chun Wang, Tseng-Hsiung Su, Shang-Ren Yang, Cheng-Long Ho, Han-Wen Kuo, Kea-Tiong Tang
  • Publication number: 20130197384
    Abstract: A medical ventilator capable of early detecting and recognizing types of pneumonia, a gas recognition chip, and a method for recognizing gas thereof are disclosed. The gas recognition chip of the medical ventilator comprises a sensor array, a sensor interface circuit, a stochastic neural network chip, a memory and a microcontroller. The sensor array receives a plurality of multiple types of gases to produce odor signals corresponding to each type of gas. The sensor interface circuit analyzes the odor signals to produce gas pattern signals corresponding to each type of gas. The stochastic neural network chip amplifies the differences between the gas pattern signals and performs dimensional reduction on the gas pattern signals to aid the analysis. The memory stores training data. The microcontroller performs a mixed gas recognizing algorithm to early detect and recognize the type of the pneumonia according to the gas training data.
    Type: Application
    Filed: April 27, 2012
    Publication date: August 1, 2013
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventors: Kea-Tiong Tang, Chung-Hung Shih, Li-Chun Wang, Hsin Chen, Yi-Wen Liu, Jyuo-Min Shyu, Chia-Min Yang, Da-Jeng Yao
  • Publication number: 20130152349
    Abstract: There is disclosed a method for making a nano-composite gas sensor. At first, there is provided a substrate. Then, electrodes are provided on the substrate in an array. Finally, a gas-sensing membrane is provided on the electrodes. The gas-sensing membrane includes a nano-conductive film and a peptide film.
    Type: Application
    Filed: December 16, 2011
    Publication date: June 20, 2013
    Applicant: Chung-Shan Institute of Science and Technology, Armaments, Bureau, Ministry of National Defense
    Inventors: Li-Chun Wang, Tseng-Hsiung Su, Shang-Ren Yang, Cheng-Long Ho, Han-Wen Kuo, Kea-Tiong Tang
  • Patent number: 8423151
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue in not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes as continued use may result in neural and further electrode damage. Systems and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Grant
    Filed: October 28, 2007
    Date of Patent: April 16, 2013
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James Singleton Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Min Zhou, Pishoy Maksy
  • Publication number: 20120185015
    Abstract: The present application deals generally with the stimulation of neural tissue by electronic means and specifically with controlling the level of electrical stimulation in order to prevent damage to the neural tissue. Methods presented in the disclosure include detecting current leakage via electrode impedance measurement, electrode capacitance measurement, and testing the electrode response to a test current pulse. Apparatus presented in the disclosure include circuitry and systems capable of performing the methods disclosed.
    Type: Application
    Filed: March 26, 2012
    Publication date: July 19, 2012
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James Singleton Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Min Zhou, Pishoy Maksy
  • Patent number: 8170682
    Abstract: The present application deals generally with the stimulation of neural tissue by electronic means and specifically with controlling the level of electrical stimulation in order to prevent damage to the neural tissue. Methods presented in the disclosure include detecting current leakage via electrode impedance measurement, electrode capacitance measurement, and testing the electrode response to test current pulse. Apparatus presented in the disclosure include circuitry and systems capable of performing the methods disclosed.
    Type: Grant
    Filed: October 29, 2007
    Date of Patent: May 1, 2012
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James Singleton Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Min Zhou, Pishoy Maksy
  • Patent number: 8060216
    Abstract: Electronic neural tissue stimulators for controlling the level of electrical stimulation in order to prevent damage to the neural tissue. Methods presented in the disclosure include detecting current leakage via electrode impedance measurement, electrode capacitance measurement, and testing the electrode response to a test current pulse. Apparatus presented in the disclosure include circuitry and systems capable of performing the methods disclosed.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: November 15, 2011
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James Singleton Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Min Zhou, Pishoy Maksy
  • Publication number: 20100288014
    Abstract: A gas sensor comprises a first surface-acoustic-wave device, at least one further surface-acoustic-wave device, and a control device. The first surface-acoustic-wave device includes a piezoelectric substrate, a pair of transducers and an external circuit. The pair of transducers consists of a first transducer and a second transducer, and they are formed on two sides of the piezoelectric substrate. The first transducer is utilized to generate a surface acoustic wave on the piezoelectric substrate. The external circuit electrically connects to the pair of transducers. At least one further surface-acoustic-wave device includes at least one first surface-acoustic-device and a sensing porous thin film of which two sides are formed on the pair of the transducers. The control device is utilized to control only one external circuit to become activated at one time.
    Type: Application
    Filed: August 11, 2009
    Publication date: November 18, 2010
    Applicant: National Tsing Hua University
    Inventors: Da-Jeng Yao, Chia-Min Yang, Kea-Tiong Tang, Hsu-Chao Hao, Je-Shih Chao, Pei-Hsin Ku, Cheng-Han Li
  • Patent number: 7482957
    Abstract: The present invention provides a DAC constructed from a series of floating gate devices which are programmable to a series of predetermined values. Addressing one or more of the programmed floating gate devices will select from a wide variety of analog outputs. Reprogramming the floating gate devices, can provide a different variety of analog outputs. For example, the floating gate devices can be preprogrammed to a different range of outputs matching a range of perceptible signals.
    Type: Grant
    Filed: September 17, 2007
    Date of Patent: January 27, 2009
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Rongqing Dai, James S. Little, Kea-Tiong Tang
  • Publication number: 20080177356
    Abstract: The present application deals generally with the stimulation of neural tissue by electronic means and specifically with controlling the level of electrical stimulation in order to prevent damage to the neural tissue. Methods presented in the disclosure include detecting current leakage via electrode impedance measurement, electrode capacitance measurement, and testing the electrode response to test current pulse. Apparatus presented in the disclosure include circuitry and systems capable of performing the methods disclosed.
    Type: Application
    Filed: October 29, 2007
    Publication date: July 24, 2008
    Inventors: Robert Jay Greenberg, Kelly Hobart McClure, James Singleton Little, Rongqing Dai, Arup Roy, Richard Agustin Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Min Zhou, Pishoy Maksy
  • Patent number: 7379000
    Abstract: The present invention provides a DAC constructed from a series of floating gate devices which are programmable to a series of predetermined values. Addressing one or more of the programmed floating gate devices will select from a wide variety of analog outputs. Reprogramming the floating gate devices, can provide a different variety of analog outputs. For example, the floating gate devices can be preprogrammed to a different range of outputs matching a range of perceptible signals.
    Type: Grant
    Filed: April 12, 2007
    Date of Patent: May 27, 2008
    Assignee: Second Sight Medical Products, Inc.
    Inventors: Rongqing Dai, James S. Little, Kea-Tiong Tang
  • Publication number: 20080068242
    Abstract: The present invention provides a DAC constructed from a series of floating gate devices which are programmable to a series of predetermined values. Addressing one or more of the programmed floating gate devices will select from a wide variety of analog outputs. Reprogramming the floating gate devices, can provide a different variety of analog outputs. For example, the floating gate devices can be preprogrammed to a different range of outputs matching a range of perceptible signals.
    Type: Application
    Filed: September 17, 2007
    Publication date: March 20, 2008
    Inventors: Rongqing Dai, James Little, Kea-Tiong Tang
  • Publication number: 20080046041
    Abstract: In electrically stimulating neural tissue it is important to prevent over stimulation and unbalanced stimulation which would cause damage to the neural tissue, the electrode, or both. It is critical that neural tissue in not subjected to any direct current or alternating current above a safe threshold. Further, it is important to identify defective electrodes as continued use may result in neural and further electrode damage. The present invention presents system and stimulator control mechanisms to prevent damage to neural tissue.
    Type: Application
    Filed: October 28, 2007
    Publication date: February 21, 2008
    Inventors: Robert Greenberg, Kelly McClure, James Little, Rongqing Dai, Arup Roy, Richard Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Zhou, Pishoy Maksy
  • Publication number: 20070265686
    Abstract: The present application deals generally with the stimulation of neural tissue by electronic means and specifically with controlling the level of electrical stimulation in order to prevent damage to the neural tissue. Methods presented in the disclosure include detecting current leakage via electrode impedance measurement, electrode capacitance measurement, and testing the electrode response to a test current pulse. Apparatus presented in the disclosure include circuitry and systems capable of performing the methods disclosed.
    Type: Application
    Filed: April 27, 2007
    Publication date: November 15, 2007
    Inventors: Robert Greenberg, Kelly McClure, James Little, Rongqing Dai, Arup Roy, Richard Castro, John Reinhold, Kea-Tiong Tang, Sumit Yadav, Chunhong Zhou, Dao Zhou, Pishoy Maksy