Patents by Inventor Keda Hu

Keda Hu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240131477
    Abstract: Hydroxide-exchange membranes (HEMs) and hydroxide-exchange ionomers (HEIs) are provided which include polymers with oxidation resistant groups. The attachment of the oxidation resistant groups to the polymer backbone allows fine-tuning of the mechanical properties of the membrane and incorporation of alkaline stable cations, such as imidazoliums, phosphoniums and ammoniums, and provides enhanced stability to the polymer. HEMs/HEIs formed from these polymers exhibit superior chemical stability, anion conductivity, decreased water uptake, good solubility in selected solvents, and improved mechanical properties in an ambient dry state as compared to conventional HEM/HEIs. The HEMs exhibit enhanced stability in a highly oxidative environment.
    Type: Application
    Filed: February 4, 2022
    Publication date: April 25, 2024
    Inventors: Yushan Yan, Keda Hu, Lan Wang, Brian Setzler, Wenjuan Shi, Junhua Wang
  • Patent number: 11827743
    Abstract: Poly(aryl alkylene) polymers or poly(aryl-crown ether-alkylene) polymers with pendant cationic groups are provided which have an alkaline-stable cation, such as imidazolium, introduced into a rigid aromatic polymer backbone free of ether bonds. Hydroxide exchange membranes or hydroxide exchange ionomers formed from these polymers exhibit superior chemical stability, hydroxide conductivity, decreased water uptake, good solubility in selected solvents, and improved mechanical properties in an ambient dry state as compared to conventional hydroxide exchange membranes or ionomers. Hydroxide exchange membrane fuel cells and hydroxide exchange membrane electrolyzers comprising the poly(aryl alkylene) polymers or poly(aryl-crown ether-alkylene) polymers with pendant cationic groups exhibit enhanced performance and durability at relatively high temperatures.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: November 28, 2023
    Assignee: University of Delaware
    Inventors: Yushan Yan, Keda Hu, Junhua Wang, Lan Wang, Santiago Rojas-Carbonell, Brian Setzler
  • Patent number: 11512156
    Abstract: Poly(aryl piperidinium) polymers with pendant cationic groups are provided which have an alkaline-stable cation, piperidinium, introduced into a rigid aromatic polymer backbone free of ether bonds. Hydroxide exchange membranes or hydroxide exchange ionomers formed from these polymers exhibit superior chemical stability, hydroxide conductivity, decreased water uptake, good solubility in selected solvents, and improved mechanical properties in an ambient dry state as compared to conventional hydroxide exchange membranes or ionomers. Hydroxide exchange membrane fuel cells comprising the poly(aryl piperidinium) polymers with pendant cationic groups exhibit enhanced performance and durability at relatively high temperatures.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: November 29, 2022
    Assignee: University of Delaware
    Inventors: Yushan Yan, Keda Hu, Junhua Wang, Lan Wang, Bingjun Xu, Yun Zhao
  • Publication number: 20210009726
    Abstract: Poly(aryl piperidinium) polymers with pendant cationic groups are provided which have an alkaline-stable cation, piperidinium, introduced into a rigid aromatic polymer backbone free of ether bonds. Hydroxide exchange membranes or hydroxide exchange ionomers formed from these polymers exhibit superior chemical stability, hydroxide conductivity, decreased water uptake, good solubility in selected solvents, and improved mechanical properties in an ambient dry state as compared to conventional hydroxide exchange membranes or ionomers. Hydroxide exchange membrane fuel cells comprising the poly(aryl piperidinium) polymers with pendant cationic groups exhibit enhanced performance and durability at relatively high temperatures.
    Type: Application
    Filed: September 28, 2018
    Publication date: January 14, 2021
    Inventors: Yushan Yan, Keda Hu, Junhua Wang, Lan Wang, Bingjun Xu, Yun Zhao
  • Publication number: 20200308341
    Abstract: Poly(aryl alkylene) polymers or poly(aryl-crown ether-alkylene) polymers with pendant cationic groups are provided which have an alkaline-stable cation, such as imidazolium, introduced into a rigid aromatic polymer backbone free of ether bonds. Hydroxide exchange membranes or hydroxide exchange ionomers formed from these polymers exhibit superior chemical stability, hydroxide conductivity, decreased water uptake, good solubility in selected solvents, and improved mechanical properties in an ambient dry state as compared to conventional hydroxide exchange membranes or ionomers. Hydroxide exchange membrane fuel cells and hydroxide exchange membrane electrolyzers comprising the poly(aryl alkylene) polymers or poly(aryl-crown ether-alkylene) polymers with pendant cationic groups exhibit enhanced performance and durability at relatively high temperatures.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 1, 2020
    Inventors: Yushan Yan, Keda Hu, Junhua Wang, Lan Wang, Santiago Rojas-Carbonell, Brian Setzler