Patents by Inventor Kedar G. Shah

Kedar G. Shah has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11801381
    Abstract: The present disclosure relates to a modular system for deep brain stimulation (DBS) and electrocorticography (ECoG). The system may have an implantable neuromodulator for generating electrical stimulation signals adapted to be applied to a desired region of a brain via an attached electrode array. An aggregator module may be used for collecting and aggregating electrical signals and transmitting the electrical signals to the neuromodulator. A control module may be used which is in communication with the aggregator module for controlling generation of the electrical signals and transmitting the electrical signals to the aggregator.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: October 31, 2023
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Satinderpall S. Pannu, Kedar G. Shah, Supin Chen, Marissa Crosetti, Timir B. Datta-Chaudhuri, Sarah H. Felix, Anna N. Ivanovskaya, Jason Jones, Kye Young Lee, Susant Patra, Vanessa Tolosa, Angela C. Tooker
  • Patent number: 11357975
    Abstract: A cylindrical microelectrode array having an elongated cylindrical core, and a multilayer structure conformally folded around and affixed to the cylindrical core so as to extend between opposite ends of the core. The multilayer structure has integrated sections including an electrode section with electrodes exposed through electrically insulating layers, a connector section with conductive bond pads for interfacing with external electronics, and a cable section with conductive traces encapsulated in electrically insulating layers and which connect between the electrodes and their corresponding bond pads. The array may be fabricated using a planar multilayer structure having the electrode, connector, and cable sections, and conformally folding the multilayer structure around and affixing to the cylindrical core. The cable section in particular may be conformally coiled around and affixed to the cylindrical core so that the electrical conduits helically extend between the connector and electrode sections.
    Type: Grant
    Filed: June 9, 2016
    Date of Patent: June 14, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Supin Chen, Sarah H. Felix, Satinderpall S. Pannu, Susant Patra, Vanessa Tolosa, Angela C. Tooker, Jason Jones
  • Patent number: 11214048
    Abstract: A stiffener-reinforced microelectrode array probe and fabrication method using wicking channel-distributed adhesives which temporarily adheres a flexible device onto a rigid stiffener for insertion and extraction. Assembly is by dispensing a liquid adhesive into a narrow open groove wicking channel formed on the stiffener so that the adhesive is wicked along and fills the channel by capillary action, and adhering the adhesive-filled bonding side of the elongated section of the rigid substrate to a flexible device.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: January 4, 2022
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Diana George, Satinderpall S. Pannu, Sarah Felix
  • Patent number: 10612153
    Abstract: The present invention relates to surface roughening methods and more particularly to a method for electrochemical roughening of thin film macro- and micro-electrodes. In one embodiment, an electrochemical etch template is formed comprising polymer particles adsorbed on a surface of a substrate to be roughened, followed by electrochemically etching of exposed regions of the substrate between the polymer particles in the electrochemical etch template so as to selectively roughen the surface of the substrate. In another embodiment, a surface of the electrode is immersed in either a adsorbing acidic solution, such as sulfuric acid, or a non-adsorbing acidic solution, such as perchloric acid, followed by electrochemically pulse etching the surface of the substrate at a narrow frequency range for adsorbing acidic solutions, or at a wide frequency range for non-adsorbing acidic solutions.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: April 7, 2020
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Anna Nikolaevna Ivanovskaya, Vanessa Tolosa, Dylan Dahlquist, Satinderpall S. Pannu, Kedar G. Shah, Angela C. Tooker, Fang Qian
  • Publication number: 20190322094
    Abstract: A stiffener-reinforced microelectrode array probe and fabrication method using wicking channel-distributed adhesives which temporarily adheres a flexible device onto a rigid stiffener for insertion and extraction. Assembly is by dispensing a liquid adhesive into a narrow open groove wicking channel formed on the stiffener so that the adhesive is wicked along and fills the channel by capillary action, and adhering the adhesive-filled bonding side of the elongated section of the rigid substrate to a flexible device.
    Type: Application
    Filed: February 25, 2019
    Publication date: October 24, 2019
    Inventors: Kedar G. Shah, Diane George, Satinderpall S. Pannu, Sarah Felix
  • Patent number: 10342128
    Abstract: Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: July 2, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Satinderpall S. Pannu, Vanessa Tolosa, Angela C. Tooker, Heeral J. Sheth, Sarah H. Felix, Terri L. Delima
  • Patent number: 10214001
    Abstract: A stiffener-reinforced microelectrode array probe and fabrication method using wicking channel-distributed adhesives which temporarily adheres a flexible device onto a rigid stiffener for insertion and extraction. Assembly is by dispensing a liquid adhesive into a narrow open groove wicking channel formed on the stiffener so that the adhesive is wicked along and tills the channel by capillary action, and adhering the adhesive-filled bonding side of the elongated section of the rigid substrate to a flexible device.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: February 26, 2019
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Diane George, Satinderpall S. Pannu, Sarah Felix
  • Publication number: 20190054295
    Abstract: The present disclosure relates to a modular system for deep brain stimulation (DBS) and electrocorticography (ECoG). The system may have an implantable neuromodulator for generating electrical stimulation signals adapted to be applied to a desired region of a brain via an attached electrode array. An aggregator module may be used for collecting and aggregating electrical signals and transmitting the electrical signals to the neuromodulator. A control module may be used which is in communication with the aggregator module for controlling generation of the electrical signals and transmitting the electrical signals to the aggregator.
    Type: Application
    Filed: December 9, 2016
    Publication date: February 21, 2019
    Applicants: Lawrence Livermore National Security, LLC, Lawrence Livermore National Security, LLC
    Inventors: Satinderpall S. PANNU, Kedar G. SHAH, Supin CHEN, Marissa CROSETTI, Timir B. DATTA-CHAUDHURI, Sarah H. FELIX, Anna N. IVANOVSKAYA, Jason JONES, Kye Young LEE, Susant PATRA, Vanessa TOLOSA, Angela C. TOOKER
  • Patent number: 10149980
    Abstract: A high density electrical connector system is disclosed which may make use of first and second connector components. The first connector component has a first substrate with a first plurality of electrical feedthroughs and at least a first plurality of electrically conductive bond pads in communication with the first plurality of electrical feedthroughs. The second connector component has a second substrate with a second plurality of electrical feedthroughs and at least a second plurality of electrically conductive bond pads in communication with the second plurality of electrical feedthroughs. An electrical coupling subsystem is disposed between the first and second connector components and makes electrical contact between associated pairs of the first and second pluralities of electrically conductive bond pads. A plurality of fasteners may be used for clamping the first and second connector components in facing relationship.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: December 11, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Satinderpall S. Pannu, Susant Patra
  • Publication number: 20180169406
    Abstract: A cylindrical microelectrode array having an elongated cylindrical core, and a multilayer structure conformally folded around and affixed to the cylindrical core so as to extend between opposite ends of the core. The multilayer structure has integrated sections including an electrode section with electrodes exposed through electrically insulating layers, a connector section with conductive bond pads for interfacing with external electronics, and a cable section with conductive traces encapsulated in electrically insulating layers and which connect between the electrodes and their corresponding bond pads. The array may be fabricated using a planar multilayer structure having the electrode, connector, and cable sections, and conformally folding the multilayer structure around and affixing to the cylindrical core. The cable section in particular may be conformally coiled around and affixed to the cylindrical core so that the electrical conduits helically extend between the connector and electrode sections.
    Type: Application
    Filed: June 9, 2016
    Publication date: June 21, 2018
    Inventors: Kedar G. Shah, Supin Chen, Sarah H. Felix, Satinderpall S. Pannu, Susant Patra, Venessa Tolosa
  • Patent number: 9999363
    Abstract: A modular, high density electrical system is disclosed which makes use of an interface component, which is well suited to being placed in contact with an anatomy of either a human or an animal, and which may be releasably coupled to an electronics module subsystem. The interface component has a plurality of electrically conductive interconnect pads that may be releasably secured by a member to a plurality of electrically conductive pads of the electronics module subsystem. The electronics module subsystem may have a substrate which supports both an electronics circuit and the interconnect pads.
    Type: Grant
    Filed: April 13, 2015
    Date of Patent: June 19, 2018
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Sarah H. Felix, Satinderpall S. Pannu, Vanessa Tolosa, Angela C. Tooker
  • Publication number: 20170350034
    Abstract: The present invention relates to surface roughening methods and more particularly to a method for electrochemical roughening of thin film macro- and micro-electrodes. In one embodiment, an electrochemical etch template is formed comprising polymer particles adsorbed on a surface of a substrate to be roughened, followed by electrochemically etching of exposed regions of the substrate between the polymer particles in the electrochemical etch template so as to selectively roughen the surface of the substrate. In another embodiment, a surface of the electrode is immersed in either a adsorbing acidic solution, such as sulfuric acid, or a non-adsorbing acidic solution, such as perchloric acid, followed by electrochemically pulse etching the surface of the substrate at a narrow frequency range for adsorbing acidic solutions, or at a wide frequency range for non-adsorbing acidic solutions.
    Type: Application
    Filed: June 6, 2017
    Publication date: December 7, 2017
    Inventors: Anna Nikolaevna Ivanovskaya, Vanessa Tolosa, Dylan Dahlquist, Satinderpall S. Pannu, Kedar G. Shah, Angela C. Tooker, Fang Qian
  • Publication number: 20170348534
    Abstract: An implantable device has a cylindrical base, at least one electrode on the cylindrical base, at least one electrically conducting lead on the cylindrical base connected to the electrode wherein the electrically conducting lead has a feature size of <10 micrometers. A protective coating on the cylindrical base covers the at least one electrically conducting lead.
    Type: Application
    Filed: June 29, 2017
    Publication date: December 7, 2017
    Inventors: Vanessa Tolosa, Satinderpall S. Pannu, Heeral Sheth, Angela C. Tooker, Kedar G. Shah, Sarah H. Felix
  • Patent number: 9788740
    Abstract: A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
    Type: Grant
    Filed: July 13, 2016
    Date of Patent: October 17, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Angela C. Tooker, Sarah H. Felix, Satinderpall S. Pannu, Kedar G. Shah, Heeral Sheth, Vanessa Tolosa
  • Patent number: 9694190
    Abstract: An implantable device has a cylindrical base, at least one electrode on the cylindrical base, at least one electrically conducting lead on the cylindrical base connected to the electrode wherein the electrically conducting lead has a feature size of <10 micrometers. A protective coating on the cylindrical base covers the at least one electrically conducting lead.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: July 4, 2017
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Vanessa Tolosa, Satinderpall S. Pannu, Heeral Sheth, Angela C. Tooker, Kedar G. Shah, Sarah H. Felix
  • Publication number: 20170036012
    Abstract: Thin-film multi-electrode arrays (MEA) having one or more electrically conductive beams conformally encapsulated in a seamless block of electrically insulating material, and methods of fabricating such MEAs using reproducible, microfabrication processes. One or more electrically conductive traces are formed on scaffold material that is subsequently removed to suspend the traces over a substrate by support portions of the trace beam in contact with the substrate. By encapsulating the suspended traces, either individually or together, with a single continuous layer of an electrically insulating material, a seamless block of electrically insulating material is formed that conforms to the shape of the trace beam structure, including any trace backings which provide suspension support. Electrical contacts, electrodes, or leads of the traces are exposed from the encapsulated trace beam structure by removing the substrate.
    Type: Application
    Filed: October 19, 2016
    Publication date: February 9, 2017
    Inventors: Phillipe J. Tabada, Satinderpall S. Pannu, Kedar G. Shah, Vanessa Tolosa, Angela Tooker, Terri Delima, Heeral Sheth, Sarah Felix
  • Publication number: 20170013713
    Abstract: Thicker electrodes are provided on microelectronic device using thermo-compression bonding. A thin-film electrical conducting layer forms electrical conduits and bulk depositing provides an electrode layer on the thin-film electrical conducting layer. An insulating polymer layer encapsulates the electrically thin-film electrical conducting layer and the electrode layer. Some of the insulating layer is removed to expose the electrode layer.
    Type: Application
    Filed: September 23, 2016
    Publication date: January 12, 2017
    Inventors: Kedar G. Shah, Satinderpall S. Pannu, Vanessa Tolosa, Angela C. Tooker, Heeral J. Sheth, Sarah H. Felix, Terri L. Delima
  • Publication number: 20160380381
    Abstract: A high density electrical connector system is disclosed which may make use of first and second connector components. The first connector component has a first substrate with a first plurality of electrical feedthroughs and at least a first plurality of electrically conductive bond pads in communication with the first plurality of electrical feedthroughs. The second connector component has a second substrate with a second plurality of electrical feedthroughs and at least a second plurality of electrically conductive bond pads in communication with the second plurality of electrical feedthroughs. An electrical coupling subsystem is disposed between the first and second connector components and makes electrical contact between associated pairs of the first and second pluralities of electrically conductive bond pads. A plurality of fasteners may be used for clamping the first and second connector components in facing relationship.
    Type: Application
    Filed: June 24, 2015
    Publication date: December 29, 2016
    Inventors: Kedar G. SHAH, Satinderpall S. PANNU, Susant PATRA
  • Publication number: 20160338607
    Abstract: A neural interface includes a first dielectric material having at least one first opening for a first electrical conducting material, a first electrical conducting material in the first opening, and at least one first interconnection trace electrical conducting material connected to the first electrical conducting material. A stiffening shank material is located adjacent the first dielectric material, the first electrical conducting material, and the first interconnection trace electrical conducting material.
    Type: Application
    Filed: July 13, 2016
    Publication date: November 24, 2016
    Inventors: Angela C. Tooker, Sarah H. Felix, Satinderpall S. Pannu, Kedar G. Shah, Heeral Sheth, Vanessa Tolosa
  • Patent number: 9504177
    Abstract: A hermetic electronics package includes a metal case with opposing first and second open ends, with each end connected to a first feedthrough construction and a second feedthrough construction. Each feedthrough contruction has an electrically insulating substrate and an array of electrically conductive feedthroughs extending therethrough, with the electrically insulating substrates connected to the opposing first and second open ends, respectively, of the metal case so as to form a hermetically sealed enclosure. A set of electronic components are located within the hermetically sealed enclosure and are operably connected to the feedthroughs of the first and second feedthrough constructions so as to electrically communicate outside the package from opposite sides of the package.
    Type: Grant
    Filed: June 14, 2012
    Date of Patent: November 22, 2016
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: Kedar G. Shah, Satinderpall S. Pannu