Patents by Inventor Kedar Khare

Kedar Khare has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8634126
    Abstract: Embodiments of the invention are directed to a new type of phase screen, i.e., an opto-electronic device that can convert a distorted incoming optical wavefront into a plane wave or, conversely, transform a plane wave into a prescribed varying output wavefront. The basic concept involves novel binary all-digital MEMS interferometer configurations that can be used to create controlled and arbitrary optical wavefront using only 0,1 amplitude changes followed by differential propagation distances to convert these amplitude variations into controllable and/or continuous phase variations. Clustered pixel notions, such as Floyd-Steinberg, Stucki or other algorithms useful in digital half-tone printing, are simultaneously employed to create controllable grey-level variations as well as continuous phase variations. Desired grey-levels can be obtained wherein each pixel is formed by, e.g., a 3×3 or 5×5 cluster of mirrors.
    Type: Grant
    Filed: October 29, 2012
    Date of Patent: January 21, 2014
    Assignee: University of Rochester
    Inventors: Nicholas George, Kedar Khare
  • Patent number: 8379292
    Abstract: A phase screen, i.e., an opto-electronic device that can convert a distorted incoming optical wavefront into a plane wave or, conversely, transform a plane wave into a prescribed varying output wavefront. Binary all-digital MEMS interferometer configurations that can be used to create controlled and arbitrary optical wavefront using only 0,1 amplitude changes followed by differential propagation distances to convert these amplitude variations into controllable and/or continuous phase variations. Clustered pixel notions, such as Floyd-Steinberg, Stucki or other algorithms useful in digital half-tone printing, are simultaneously employed to create controllable grey-level variations as well as continuous phase variations. Desired grey-levels can be obtained wherein each pixel is formed by, e.g., a 3×3 or 5×5 cluster of mirrors. Both the filling-in of the outputs of the binary mirror (0,1) and the grey-levels are accomplished simply by spatial averaging over a short propagation distance.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: February 19, 2013
    Assignee: University of Rochester
    Inventors: Nicholas George, Kedar Khare
  • Patent number: 8160342
    Abstract: A signal processing method include steps initializing a residual data signal representative of an acquired data signal, determining a significant coefficient corresponding to the residual data signal, updating the residual data signal using the significant coefficient to generate updated residual data signal, iteratively determining significant coefficients to generate a plurality of significant coefficients using the updated residual data signal, updating the plurality of significant coefficients by using a successive approximation technique, to improve the numerical accuracy of the significant coefficients and reconstructing a data signal using the updated plurality of significant coefficients.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: April 17, 2012
    Assignee: General Electric Company
    Inventors: Kedar Khare, Christopher Judson Hardy, Luca Marinelli, Xiaodong Tao
  • Publication number: 20120062979
    Abstract: A phase screen, i.e., an opto-electronic device that can convert a distorted incoming optical wavefront into a plane wave or, conversely, transform a plane wave into a prescribed varying output wavefront. Binary all-digital MEMS interferometer configurations that can be used to create controlled and arbitrary optical wavefront using only 0,1 amplitude changes followed by differential propagation distances to convert these amplitude variations into controllable and/or continuous phase variations. Clustered pixel notions, such as Floyd-Steinberg, Stucki or other algorithms useful in digital half-tone printing, are simultaneously employed to create controllable grey-level variations as well as continuous phase variations. Desired grey-levels can be obtained wherein each pixel is formed by, e.g., a 3×3 or 5×5 cluster of mirrors. Both the filling-in of the outputs of the binary mirror (0,1) and the grey-levels are accomplished simply by spatial averaging over a short propagation distance.
    Type: Application
    Filed: November 1, 2011
    Publication date: March 15, 2012
    Applicant: UNIVERSITY OF ROCHESTER
    Inventors: Nicholas George, Kedar Khare
  • Patent number: 8107156
    Abstract: Embodiments of the invention are directed to a new type of phase screen, i.e., an opto-electronic device that can convert a distorted incoming optical wavefront into a plane wave or, conversely, transform a plane wave into a prescribed varying output wavefront. The basic concept involves novel binary all-digital MEMS interferometer configurations that can be used to create controlled and arbitrary optical wavefront using only 0,1 amplitude changes followed by differential propagation distances to convert these amplitude variations into controllable and/or continuous phase variations. Clustered pixel notions, such as Floyd-Steinberg, Stucki or other algorithms useful in digital half-tone printing, are simultaneously employed to create controllable grey-level variations as well as continuous phase variations. Desired grey-levels can be obtained wherein each pixel is formed by, e.g., a 3×3 or 5×5 cluster of mirrors.
    Type: Grant
    Filed: June 28, 2006
    Date of Patent: January 31, 2012
    Assignee: University of Rochester
    Inventors: Nicholas George, Kedar Khare
  • Publication number: 20100245976
    Abstract: Embodiments of the invention are directed to a new type of phase screen, i.e., an opto-electronic device that can convert a distorted incoming optical wavefront into a plane wave or, conversely, transform a plane wave into a prescribed varying output wavefront. The basic concept involves novel binary all-digital MEMS interferometer configurations that can be used to create controlled and arbitrary optical wavefront using only 0,1 amplitude changes followed by differential propagation distances to convert these amplitude variations into controllable and/or continuous phase variations. Clustered pixel notions, such as Floyd-Steinberg, Stucki or other algorithms useful in digital half-tone printing, are simultaneously employed to create controllable grey-level variations as well as continuous phase variations. Desired grey-levels can be obtained wherein each pixel is formed by, e.g., a 3×3 or 5×5 cluster of mirrors.
    Type: Application
    Filed: June 28, 2006
    Publication date: September 30, 2010
    Applicant: University of Rochester
    Inventors: Nicholas George, Kedar Khare
  • Publication number: 20100220908
    Abstract: A signal processing method include steps initializing a residual data signal representative of an acquired data signal, determining a significant coefficient corresponding to the residual data signal, updating the residual data signal using the significant coefficient to generate updated residual data signal, iteratively determining significant coefficients to generate a plurality of significant coefficients using the updated residual data signal, updating the plurality of significant coefficients by using a successive approximation technique, to improve the numerical accuracy of the significant coefficients and reconstructing a data signal using the updated plurality of significant coefficients.
    Type: Application
    Filed: February 27, 2009
    Publication date: September 2, 2010
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Kedar Khare, Christopher Judson Hardy, Luca Marinelli, Xiaodong Tao