Patents by Inventor Kedar Sapre

Kedar Sapre has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110223760
    Abstract: A method for improving conformality of oxide layers along sidewalls of vias in semiconductor substrates includes forming a nitride layer over an upper surface of a semiconductor substrate and forming a via extending through the nitride layer and into the semiconductor substrate. The via may have a depth of at least about 50 ?m from a top surface of the nitride layer and an opening of less than about 10 ?m at the top surface of the nitride layer. The method also includes forming an oxide layer over the nitride layer and along sidewalls and bottom of the via. The oxide layer may be formed using a thermal chemical vapor deposition (CVD) process at a temperature of less than about 450° C., where a thickness of the oxide layer at the bottom of the via is at least about 50% of a thickness of the oxide layer at the top surface of the nitride layer.
    Type: Application
    Filed: February 25, 2011
    Publication date: September 15, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Zhong Qiang Hua, Manuel A. Hernandez, Lei Luo, Kedar Sapre
  • Publication number: 20110223774
    Abstract: Aspects of the disclosure pertain to methods of depositing dielectric layers on patterned substrates. In embodiments, dielectric layers are deposited by flowing BIS(DIETHYLAMINO)SILANE (BDEAS), ozone and molecular oxygen into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface. The deposition of dielectric layers grown according to embodiments may have a reduced dependence on pattern density while still being suitable for non-sacrificial applications.
    Type: Application
    Filed: August 13, 2010
    Publication date: September 15, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Sasha Kweskin, Paul Edward Gee, Shankar Venkataraman, Kedar Sapre
  • Patent number: 7994019
    Abstract: Aspects of the disclosure pertain to methods of depositing conformal silicon oxide layers on patterned substrates. In embodiments, dielectric layers are deposited by flowing a silicon-containing precursor and ozone into a processing chamber such that a relatively uniform dielectric growth rate is achieved across the patterned substrate surface having heterogeneous materials and/or a heterogeneous pattern density distribution. The deposition of dielectric layers grown according to embodiments may have a reduced dependence on underlying material and pattern density while still being suitable for non-sacrificial applications. Reduction in dependence on pattern density is achieved by terminating deposition near the end of an incubation period. Multiple deposition cycles may be conducted in series since the beneficial nature of the incubation period may repeat after a pause in deposition.
    Type: Grant
    Filed: September 27, 2010
    Date of Patent: August 9, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Sasha Kweskin, Paul Edward Gee, Shankar Venkataraman, Kedar Sapre
  • Publication number: 20110053380
    Abstract: A method of etching silicon-and-carbon-containing material is described and includes a SiConi™ etch in combination with a flow of reactive oxygen. The reactive oxygen may be introduced before the SiConi™ etch reducing the carbon content in the near surface region and allowing the SiConi™ etch to proceed more rapidly. Alternatively, reactive oxygen may be introduced during the SiConi™ etch further improving the effective etch rate.
    Type: Application
    Filed: August 31, 2009
    Publication date: March 3, 2011
    Applicant: Applied Materials, Inc.
    Inventors: Kedar Sapre, Jing Tang, Linlin Wang, Abhijit Basu Mallick, Nitin Ingle
  • Patent number: 7825038
    Abstract: Methods of depositing a silicon oxide layer on a substrate are described. The methods may include the steps of providing a substrate to a deposition chamber, generating an atomic oxygen precursor outside the deposition chamber, and introducing the atomic oxygen precursor into the chamber. The methods may also include introducing a silicon precursor to the deposition chamber, where the silicon precursor and the atomic oxygen precursor are first mixed in the chamber. The silicon precursor and the atomic oxygen precursor react to form the silicon oxide layer on the substrate, and the deposited silicon oxide layer may be annealed. Systems to deposit a silicon oxide layer on a substrate are also described.
    Type: Grant
    Filed: May 29, 2007
    Date of Patent: November 2, 2010
    Assignee: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Zheng Yuan, Paul Gee, Kedar Sapre
  • Publication number: 20090031953
    Abstract: Methods of depositing a silicon oxide layer on a substrate are described. The methods may include the steps of providing a substrate to a deposition chamber, generating an atomic oxygen precursor outside the deposition chamber, and introducing the atomic oxygen precursor into the chamber. The methods may also include introducing a silicon precursor to the deposition chamber, where the silicon precursor and the atomic oxygen precursor are first mixed in the chamber. The silicon precursor and the atomic oxygen precursor react to form the silicon oxide layer on the substrate, and the deposited silicon oxide layer may be annealed. Systems to deposit a silicon oxide layer on a substrate are also described.
    Type: Application
    Filed: October 10, 2008
    Publication date: February 5, 2009
    Applicant: Applied Materials, Inc.
    Inventors: Nitin K. Ingle, Zheng Yuan, Paul Gee, Kedar Sapre
  • Publication number: 20080311753
    Abstract: A method of forming and removing a sacrificial oxide layer is described. The method includes forming a step on a substrate, where the step has a top and sidewalls. The method may also include forming the sacrificial oxide layer around the step by chemical vapor deposition of molecular oxygen and TEOS, where the oxide layer is formed on the top and sidewalls of the step. The method may also include removing a top portion of the oxide layer and the step; removing a portion of the substrate exposed by the removal of the step to form a etched substrate; and removing the entire sacrificial oxide layer from the etched substrate.
    Type: Application
    Filed: June 11, 2008
    Publication date: December 18, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Yi Zheng, Sasha J. Kweskin, Kedar Sapre, Nitin K. Ingle, Zheng Yuan
  • Publication number: 20070281496
    Abstract: Methods of depositing a silicon oxide layer on a substrate are described. The methods may include the steps of providing a substrate to a deposition chamber, generating an atomic oxygen precursor outside the deposition chamber, and introducing the atomic oxygen precursor into the chamber. The methods may also include introducing a silicon precursor to the deposition chamber, where the silicon precursor and the atomic oxygen precursor are first mixed in the chamber. The silicon precursor and the atomic oxygen precursor react to form the silicon oxide layer on the substrate, and the deposited silicon oxide layer may be annealed. Systems to deposit a silicon oxide layer on a substrate are also described.
    Type: Application
    Filed: May 29, 2007
    Publication date: December 6, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Nitin Ingle, Zheng Yuan, Paul Gee, Kedar Sapre