Patents by Inventor Kee Chan Kim

Kee Chan Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11955613
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: April 9, 2024
    Assignee: Worcester Polytechnic Institute
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan, Kee-Chan Kim
  • Publication number: 20240113350
    Abstract: A battery recycling process recovers lithium from nickel-rich cathode material in a recycling stream of end-of-life batteries. A dilute acid leach of a high nickel content cathode material contains a mixture of sulfuric acid based on a molar quantity of lithium in the cathode material. The highly selective leach generates a lithium rich solution with a small amount of nickel removable by nanofiltration to achieve a highly efficient recovery of the lithium contained in the recycling stream. A quantity of the leach acid based on the lithium content and a quantity of water based on a total black mass of the recycling stream results in a highly selective, near pure lithium leach when the recycling stream results from high nickel NMC batteries such as 811.
    Type: Application
    Filed: October 12, 2022
    Publication date: April 4, 2024
    Inventors: Kee-Chan Kim, Eric Gratz
  • Publication number: 20240113349
    Abstract: Recycling of nickel-metal hydride (NiMH) batteries extracts substantially pure nickel based on adding a leach agent to granular cathode material resulting from agitation of the NiMH batteries to form a leach solution. A pH of the leach solution is maintained for precipitating iron, aluminum and lanthanide rare earth elements (REE) for yielding a nickel solution for forming a cathode material precursor in a recycled battery, often with a high nickel content.
    Type: Application
    Filed: September 30, 2022
    Publication date: April 4, 2024
    Inventor: Kee-Chan Kim
  • Publication number: 20230038978
    Abstract: The inventions described herein provide methods and systems for recycling lithium iron phosphate batteries, including: adding an oxidizing agent to a recycling stream of lithium iron phosphate (LiFePO4) batteries to form a leach solution; filtering the leach solution to remove a residue and obtain a lithium rich solution; modifying pH of the lithium rich solution for filtering impurities and obtaining a purified Li solution; and adding a precipitant to the purified Li solution thereby precipitating a lithium compound.
    Type: Application
    Filed: August 2, 2022
    Publication date: February 9, 2023
    Inventors: Eric Gratz, Kee-Chan Kim
  • Publication number: 20220311068
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Application
    Filed: June 15, 2022
    Publication date: September 29, 2022
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan, Kee-Chan Kim
  • Publication number: 20210391606
    Abstract: Cathode material from exhausted lithium ion batteries are dissolved in a solution for extracting the useful elements Co (cobalt), Ni (nickel), Al (Aluminum) and Mn (manganese) to produce active cathode materials for new batteries. The solution includes compounds of desirable materials such as cobalt, nickel, aluminum and manganese dissolved as compounds from the exhausted cathode material of spent cells. Depending on a desired proportion, or ratio, of the desired materials, raw materials are added to the solution to achieve the desired ratio of the commingled compounds for the recycled cathode material for new cells. The desired materials precipitate out of solution without extensive heating or separation of the desired materials into individual compounds or elements. The resulting active cathode material has the predetermined ratio for use in new cells, and avoids high heat typically required to separate the useful elements because the desired materials remain commingled in solution.
    Type: Application
    Filed: August 26, 2021
    Publication date: December 16, 2021
    Inventors: Yan Wang, Eric Gratz, Qina Sa, Zhangfeng Zheng, Joseph Heelan, Kee-Chan Kim
  • Patent number: 8710253
    Abstract: Solution-based precursors for use as starting materials in film deposition processes, such as atomic layer deposition, chemical vapor deposition and metalorganic chemical vapor deposition. The solution-based precursors allow for the use of otherwise solid precursors that would be unsuitable for vapor phase deposition processes because of their tendency to decompose and solidify during vaporization.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: April 29, 2014
    Assignee: Linde Aktiengesellschaft
    Inventors: Ce Ma, Kee-Chan Kim, Graham Anthony McFarlane
  • Publication number: 20120178953
    Abstract: Solution-based precursors for use as starting materials in film deposition processes, such as atomic layer deposition, chemical vapor deposition and metalorganic chemical vapor deposition. The solution-based precursors allow for the use of otherwise solid precursors that would be unsuitable for vapor phase deposition processes because of their tendency to decompose and solidify during vaporization.
    Type: Application
    Filed: July 1, 2010
    Publication date: July 12, 2012
    Inventors: Ce Ma, Kee-Chan Kim, Graham Anthony McFarlane
  • Publication number: 20100290945
    Abstract: Oxygen free, solution based zirconium precursors for use in ALD processes are disclosed for growing ZrO2 or other Zr compound films in a self-limiting and conformal manner. An oxygen free, solution based ALD precursor of (t-BuCp)2ZrMC2 is particular useful for depositing ZrO2 or other Zr compound films.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 18, 2010
    Inventors: Ce MA, Kee-Chan Kim, Graham Anthony McFarlane
  • Publication number: 20100290968
    Abstract: Oxygen free cyclopentadienyl solvent based precursor formulations having the general formula: (R1R2R3R4R5Cp)3*M wherein R1, R2, R3, R4, and R5 are H or hydrocarbon CnHm (n=1 to 10, m=1 to 2n+1), Cp is cyclopentadienyl and M is an element from the lanthanide series or Group III materials.
    Type: Application
    Filed: May 13, 2009
    Publication date: November 18, 2010
    Inventors: Ce MA, Kee-Chan Kim, Graham Anthony McFarlane
  • Publication number: 20090117274
    Abstract: Alkyl cyclopentadienyl precursors for use in ALD processes are disclosed. The present invention particularly relates to La alkyl cyclopentadienyl precursors, such as tris(isopropyl-cyclopentadienyl) Lanthanum.
    Type: Application
    Filed: October 30, 2008
    Publication date: May 7, 2009
    Inventors: Ce Ma, Kee-Chan Kim, Graham Anthony McFarlane
  • Patent number: 7001791
    Abstract: A method for forming group III-N articles includes the steps of providing a single crystal silicon substrate, depositing a zinc oxide (ZnO) layer on the substrate, and depositing a single crystal group III-N layer on the ZnO layer. At least a portion of the group III-N layer is deposited at a temperature of less than 600° C.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: February 21, 2006
    Assignee: University of Florida
    Inventors: Olga Kryliouk, Tim Anderson, Kee Chan Kim
  • Patent number: 6967355
    Abstract: A semiconductor device and method for forming the same includes a silicon (111) single crystal substrate, and an epitaxial boron phosphide (BP) layer disposed on the substrate. A group III-nitride semiconductor epitaxial layer is disposed on the BP epitaxial layer.
    Type: Grant
    Filed: October 22, 2003
    Date of Patent: November 22, 2005
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Olga Kryliouk, Tim Anderson, Omar J. Bchir, Kee Chan Kim
  • Publication number: 20040201030
    Abstract: A method for forming group III-N articles includes the steps of providing a single crystal silicon substrate, depositing a zinc oxide (ZnO) layer on the substrate, and depositing a single crystal group III-N layer on the ZnO layer. At least a portion of the group III-N layer is deposited at a temperature of less than 600° C.
    Type: Application
    Filed: October 22, 2003
    Publication date: October 14, 2004
    Inventors: Olga Kryliouk, Tim Anderson, Kee Chan Kim