Patents by Inventor Keen Ian Chan
Keen Ian Chan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20230084519Abstract: A method and system for generating a set of values for respective ones of a set of parameters used in determining rotor blade profiles for a corotating coaxial rotor system. The method comprises establishing a ratio of respective desired thrusts of an upper rotor and a lower rotor of the corotating coaxial rotor system based on a desired performance of the corotating coaxial rotor system; and determining the set of values of the set of parameters from the desired thrusts ratio based on an equal rotation speed condition between the upper rotor and the lower rotor of the corotating coaxial rotor system, wherein the set of parameters includes torques of the upper rotor and the lower rotor.Type: ApplicationFiled: December 14, 2020Publication date: March 16, 2023Inventor: Keen Ian CHAN
-
Patent number: 11479351Abstract: An aerial vehicle may include a first wing structure. The aerial vehicle may further include a first propeller and a second propeller disposed along the first wing structure. The aerial vehicle may further include a second wing structure disposed to intersect the first wing structure to form a cross configuration. The aerial vehicle may further include a third propeller and a fourth propeller disposed along the second wing structure. In a hovering orientation of the aerial vehicle, respective propeller rotational axes of the first and second propellers may be angled off-vertical in respective planes which may be perpendicular to a transverse axis of the first wing structure, and respective propeller rotational axes of the third and fourth propellers may be angled off-vertical in respective planes which may be perpendicular to a transverse axis of the second wing structure.Type: GrantFiled: May 9, 2017Date of Patent: October 25, 2022Assignee: ST ENGINEERING AEROSPACE LTD.Inventor: Keen Ian Chan
-
Patent number: 11358719Abstract: An aerial vehicle including a first wing structure and a second wing structure which intersects the first wing structure perpendicularly at a position offset from a midpoint of a transverse axis of the first wing structure in a direction towards a first wingtip of the first wing structure. The aerial vehicle may further include a first set of at least two propellers with respective propeller rotational axes disposed side-by-side along a portion of the first wing structure extending between the midpoint of the transverse axis of the first wing structure and a second wingtip of the first wing structure. The aerial vehicle may further include a second set of at least two propellers with respective propeller rotational axes disposed side-by-side along a first portion of the second wing structure extending from a first surface of the first wing structure.Type: GrantFiled: July 18, 2017Date of Patent: June 14, 2022Assignee: ST ENGINEERING AEROSPACE LTD.Inventor: Keen Ian Chan
-
Patent number: 11014662Abstract: A method and system for generating a set of values for respective ones of a set of parameters used in determining rotor blade profiles for a coaxial rotor system. The method includes establishing (302) a ratio of respective desired thrusts of an upper rotor (102, 602) and a lower rotor (104, 604) of the coaxial rotor system based on a desired performance of the coaxial rotor system, and determining (304) the set of values of the set of parameters from the desired thrusts ratio based on a torque balance condition between the upper rotor and the lower rotor of the coaxial rotor system.Type: GrantFiled: December 9, 2015Date of Patent: May 25, 2021Assignee: ST ENGINEERING AEROSPACE LTD.Inventor: Keen Ian Chan
-
Publication number: 20200172238Abstract: An aerial vehicle may include a first wing structure. The aerial vehicle may further include a first propeller and a second propeller disposed along the first wing structure. The aerial vehicle may further include a second wing structure disposed to intersect the first wing structure to form a cross configuration. The aerial vehicle may further include a third propeller and a fourth propeller disposed along the second wing structure. In a hovering orientation of the aerial vehicle, respective propeller rotational axes of the first and second propellers may be angled off-vertical in respective planes which may be perpendicular to a transverse axis of the first wing structure, and respective propeller rotational axes of the third and fourth propellers may be angled off-vertical in respective planes which may be perpendicular to a transverse axis of the second wing structure.Type: ApplicationFiled: May 9, 2017Publication date: June 4, 2020Inventor: Keen Ian CHAN
-
Publication number: 20200172243Abstract: An aerial vehicle including a first wing structure and a second wing structure which intersects the first wing structure perpendicularly at a position offset from a midpoint of a transverse axis of the first wing structure in a direction towards a first wingtip of the first wing structure. The aerial vehicle may further include a first set of at least two propellers with respective propeller rotational axes disposed side-by-side along a portion of the first wing structure extending between the midpoint of the transverse axis of the first wing structure and a second wingtip of the first wing structure. The aerial vehicle may further include a second set of at least two propellers with respective propeller rotational axes disposed side-by-side along a first portion of the second wing structure extending from a first surface of the first wing structure.Type: ApplicationFiled: July 18, 2017Publication date: June 4, 2020Inventor: Keen Ian CHAN
-
Publication number: 20190002096Abstract: A method and system for generating a set of values for respective ones of a set of parameters used in determining rotor blade profiles for a coaxial rotor system. The method includes establishing (302) a ratio of respective desired thrusts of an upper rotor (102, 602) and a lower rotor (104, 604) of the coaxial rotor system based on a desired performance of the coaxial rotor system, and determining (304) the set of values of the set of parameters from the desired thrusts ratio based on a torque balance condition between the upper rotor and the lower rotor of the coaxial rotor system.Type: ApplicationFiled: December 9, 2015Publication date: January 3, 2019Inventor: Keen Ian CHAN
-
Patent number: 10005554Abstract: An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method of assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises an elongated wing structure having an elongated axis along the longest dimension of the elongated wing structure, the elongated wing structure having a middle location at a substantially halfway point; a connecting structure extending substantially perpendicularly from the elongated wing structure, the connecting structure being offset from the middle location of the elongated wing structure at a first position along the elongated axis; and at least three sets of propellers, wherein at least two sets of propellers are mounted on the connecting structure, and wherein at least one set of propellers is mounted at a second position offset from the middle location in an opposite direction away from the connecting structure.Type: GrantFiled: December 24, 2013Date of Patent: June 26, 2018Assignee: Singapore Technologies Aerospace Ltd.Inventor: Keen Ian Chan
-
Patent number: 9669924Abstract: An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method for assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises a wing structure comprising elongated equal first and second wings; a support structure comprising first and second sections coupled to a middle position of the wing structure and extending in opposite directions perpendicular to the wing structure; and four propellers, each mounted to a respective one of the first and second wings, and first and second sections, for powering the UAV during both vertical and horizontal flight modes.Type: GrantFiled: September 14, 2012Date of Patent: June 6, 2017Assignee: Singapore Technologies Aerospace LtdInventor: Keen Ian Chan
-
Publication number: 20160272313Abstract: An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method of assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises an elongated wing structure having an elongated axis along the longest dimension of the elongated wing structure, the elongated wing structure having a middle location at a substantially halfway point; a connecting structure extending substantially perpendicularly from the elongated wing structure, the connecting structure being offset from the middle location of the elongated wing structure at a first position along the elongated axis; and at least three sets of propellers, wherein at least two sets of propellers are mounted on the connecting structure, and wherein at least one set of propellers is mounted at a second position offset from the middle location in an opposite direction away from the connecting structure.Type: ApplicationFiled: December 24, 2013Publication date: September 22, 2016Inventor: Keen Ian Chan
-
Publication number: 20150344126Abstract: Various embodiments provide a method for improving crosswind stability of a propeller duct. The method comprises defining an initial duct section based on a predetermined airfoil section having an initial value of a geometric parameter such that the geometric parameter of a portion of the initial duct section has the initial value. The method also comprises determining fluid flow paths around the initial duct section when subject to a crosswind having a predetermined crosswind speed. The method further comprises varying the initial value of the geometric parameter of the initial duct section to a threshold value which causes separation of fluid flow paths at a windward side of the initial duct section at and above the predetermined crosswind speed to form an improved duct section. Various embodiments provide a corresponding apparatus, system and/or computer readable medium.Type: ApplicationFiled: January 13, 2014Publication date: December 3, 2015Inventor: Keen Ian CHAN
-
Publication number: 20140217229Abstract: An unmanned aerial vehicle (UAV) capable of vertical and horizontal flight modes, a method for assembling a UAV, and a kit of parts for assembling a UAV. The UAV comprises a wing structure comprising elongated equal first and second wings; a support structure comprising first and second sections coupled to a middle position of the wing structure and extending in opposite directions perpendicular to the wing structure; and four propellers, each mounted to a respective one of the first and second wings, and first and second sections, for powering the UAV during both vertical and horizontal flight modes.Type: ApplicationFiled: September 14, 2012Publication date: August 7, 2014Applicant: SINGAPORE TECHNOLOGIES AEROSPACE LTDInventor: Keen Ian Chan