Patents by Inventor Keen Wah Chow

Keen Wah Chow has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240079317
    Abstract: Methods, systems, and devices for techniques to manufacture inter-layer vias are described. In some examples, a manufacturing process for a via to one or more metal lines within an integrated circuit may not include forming a metal pad for the via. For example, the manufacturing process may include forming a layer of dielectric material over a set of metal lines. The manufacturing process may further include forming a cavity through the dielectric layer (e.g., using an etching procedure), exposing the upper surfaces and sidewalls of one or more metal lines of the set. Subsequently, the via may be formed by depositing a conductive material within the cavity. In some cases, the conductive material may be deposited to contact the sidewalls of the one or more metal lines. Such an assembly may establish electrical connection to other electrical components of the integrated circuit.
    Type: Application
    Filed: September 6, 2022
    Publication date: March 7, 2024
    Inventors: Jun Rong Tan, Keen Wah Chow, Hao Ting Teo, Hoong Shing Wong
  • Publication number: 20210375670
    Abstract: An apparatus comprises a structure including an upper insulating material overlying a lower insulating material, a conductive element underlying the lower insulating material, and a conductive material comprising a metal line and a contact. The conductive material extends from an upper surface of the upper insulating material to an upper surface of the conductive element. The structure also comprises a liner material adjacent the metal line. A width of an uppermost surface of the conductive material of the metal line external to the contact is relatively less than a width of an uppermost surface of the conductive material of the contact. Related methods, memory devices, and electronic systems are disclosed.
    Type: Application
    Filed: August 12, 2021
    Publication date: December 2, 2021
    Inventors: Xiaosong Zhang, Yongjun J. Hu, David A. Kewley, Md Zahid Hossain, Michael J. Irwin, Daniel Billingsley, Suresh Ramarajan, Robert J. Hanson, Biow Hiem Ong, Keen Wah Chow
  • Patent number: 11101171
    Abstract: An apparatus comprises a structure including an upper insulating material overlying a lower insulating material, a conductive element underlying the lower insulating material, and a conductive material comprising a metal line and a contact. The conductive material extends from an upper surface of the upper insulating material to an upper surface of the conductive element. The structure also comprises a liner material adjacent the metal line. A width of an uppermost surface of the conductive material of the metal line external to the contact is relatively less than a width of an uppermost surface of the conductive material of the contact. Related methods, memory devices, and electronic systems are disclosed.
    Type: Grant
    Filed: August 16, 2019
    Date of Patent: August 24, 2021
    Assignee: Micron Technology, Inc.
    Inventors: Xiaosong Zhang, Yongjun J. Hu, David A. Kewley, Md Zahid Hossain, Michael J. Irwin, Daniel Billingsley, Suresh Ramarajan, Robert J. Hanson, Biow Hiem Ong, Keen Wah Chow
  • Publication number: 20210091009
    Abstract: Some embodiments include a memory device having a conductive structure which includes silicon-containing material. A stack is over the conductive structure and includes alternating insulative levels and conductive levels. Channel material pillars extend through the stack and are electrically coupled with the conductive structure. Memory cells are along the channel material pillars. A conductive barrier material is under the silicon-containing material. The conductive barrier material includes one or more metals in combination with one or more nonmetals. An electrical contact is under the conductive barrier material. The electrical contact includes a region reactive with silicon. Silicon is precluded from reaching said region at least in part due to the conductive barrier material. Control circuitry is under the electrical contact and is electrically coupled with the conductive structure through at least the electrical contact and the conductive barrier material.
    Type: Application
    Filed: September 23, 2019
    Publication date: March 25, 2021
    Applicant: Micron Technology, Inc.
    Inventors: Devesh Kumar Datta, David Daycock, Keen Wah Chow, Tom George, Justin B. Dorhout, Bingli Ma, Rita J. Klein, John Mark Meldrim
  • Publication number: 20210050252
    Abstract: An apparatus comprises a structure including an upper insulating material overlying a lower insulating material, a conductive element underlying the lower insulating material, and a conductive material comprising a metal line and a contact. The conductive material extends from an upper surface of the upper insulating material to an upper surface of the conductive element. The structure also comprises a liner material adjacent the metal line. A width of an uppermost surface of the conductive material of the metal line external to the contact is relatively less than a width of an uppermost surface of the conductive material of the contact. Related methods, memory devices, and electronic systems are disclosed.
    Type: Application
    Filed: August 16, 2019
    Publication date: February 18, 2021
    Inventors: Xiaosong Zhang, Yongjun J. Hu, David A. Kewley, Md Zahid Hossain, Michael J. Irwin, Daniel Billingsley, Suresh Ramarajan, Robert J. Hanson, Biow Hiem Ong, Keen Wah Chow
  • Patent number: 10475810
    Abstract: Some embodiments include a memory assembly having memory cells proximate a conductive source. Channel material extends along the memory cells and is electrically coupled with the conductive source. The conductive source is over an insulative material and includes an adhesion material directly against the insulative material. The adhesion material comprises one or more of metal, silicon nitride, silicon oxynitride, silicon carbide, metal silicide, metal carbide, metal oxide, metal oxynitride and metal nitride. The conductive source includes metal-containing material over and directly against the adhesion material. The metal-containing material consists essentially of metal. The conductive source includes a metal-and-nitrogen-containing material over and directly against the metal-containing material, and includes a conductively-doped semiconductor material over the metal-and-nitrogen-containing material.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: November 12, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Sudip Bandyopadhyay, Keen Wah Chow, Devesh Kumar Datta, Anurag Jindal, David Ross Economy, John Mark Meldrim
  • Publication number: 20180308861
    Abstract: Some embodiments include a memory assembly having memory cells proximate a conductive source. Channel material extends along the memory cells and is electrically coupled with the conductive source. The conductive source is over an insulative material and includes an adhesion material directly against the insulative material. The adhesion material comprises one or more of metal, silicon nitride, silicon oxynitride, silicon carbide, metal silicide, metal carbide, metal oxide, metal oxynitride and metal nitride. The conductive source includes metal-containing material over and directly against the adhesion material. The metal-containing material consists essentially of metal. The conductive source includes a metal-and-nitrogen-containing material over and directly against the metal-containing material, and includes a conductively-doped semiconductor material over the metal-and-nitrogen-containing material.
    Type: Application
    Filed: June 29, 2018
    Publication date: October 25, 2018
    Applicant: Micron Technology, Inc.
    Inventors: Sudip Bandyopadhyay, Keen Wah Chow, Devesh Kumar Datta, Anurag Jindal, David Ross Economy, John Mark Meldrim
  • Patent number: 10014319
    Abstract: Some embodiments include a memory assembly having memory cells proximate a conductive source. Channel material extends along the memory cells and is electrically coupled with the conductive source. The conductive source is over an insulative material and includes an adhesion material directly against the insulative material. The adhesion material comprises one or more of metal, silicon nitride, silicon oxynitride, silicon carbide, metal silicide, metal carbide, metal oxide, metal oxynitride and metal nitride. The conductive source includes metal-containing material over and directly against the adhesion material. The metal-containing material consists essentially of metal. The conductive source includes a metal-and-nitrogen-containing material over and directly against the metal-containing material, and includes a conductively-doped semiconductor material over the metal-and-nitrogen-containing material.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: July 3, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Sudip Bandyopadhyay, Keen Wah Chow, Devesh Kumar Datta, Anurag Jindal, David Ross Economy, John Mark Meldrim
  • Patent number: 9773807
    Abstract: Some embodiments include a memory assembly having memory cells proximate a conductive source. Channel material extends along the memory cells and is electrically coupled with the conductive source. The conductive source is over an insulative material and includes an adhesion material directly against the insulative material. The adhesion material comprises one or more of metal, silicon nitride, silicon oxynitride, silicon carbide, metal silicide, metal carbide, metal oxide, metal oxynitride and metal nitride. The conductive source includes metal-containing material over and directly against the adhesion material. The metal-containing material consists essentially of metal. The conductive source includes a metal-and-nitrogen-containing material over and directly against the metal-containing material, and includes a conductively-doped semiconductor material over the metal-and-nitrogen-containing material.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: September 26, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Sudip Bandyopadhyay, Keen Wah Chow, Devesh Kumar Datta, Anurag Jindal, David Ross Economy, John Mark Meldrim
  • Publication number: 20130234280
    Abstract: A manufacturing method of STI in DRAM includes the following steps. Step 1 is providing a substrate and step 2 is forming at least one trench in the substrate. Step 3 is doping at least one of side portions and bottom portions of the trench with a dopant. Step 4 is forming an oxidation inside the trench and step 5 is providing a planarization step to remove the oxidation. The stress of the corners of STI is reduced so as to modify the defect of the substrate and improve the DRAM variability in retention time.
    Type: Application
    Filed: March 16, 2012
    Publication date: September 12, 2013
    Applicant: INOTERA MEMORIES, INC.
    Inventors: ARVIND KUMAR, ERIC LAHAUG, DEVESH KUMAR DATTA, KEEN WAH CHOW, CHIA MING YANG, CHIEN-CHI LEE, FREDERICK DAVID FISHBURN
  • Publication number: 20110201185
    Abstract: Methods to dope transistors with equal or similar dopant concentration are described. In a first alternative, a slow dose per pulse ramp during plasma-assisted doping is proposed. This method results in a thinner surface deposited layer resulting in equal dopant concentration throughout the area. In a second alternative, transistors are placed away from the mask edge in order to achieve equal dopant concentration.
    Type: Application
    Filed: February 17, 2010
    Publication date: August 18, 2011
    Inventors: Devesh Kumar Datta, Keen Wah Chow, Chun Kit Kwok, Wai Khin Joshua Lee
  • Patent number: 7407871
    Abstract: A process for fabricating an MOS device specifically a DRAM device, featuring passivation of defects in regions of a semiconductor substrate wherein defects left unpassivated can deleteriously influence data retention time, has been developed. A high density plasma dry etching procedure used to define the DRAM conductive gate electrode can create unwanted defects in a region near the surface of uncovered portions of the semiconductor substrate during the high density plasma procedure over etch cycle. Implantation of a group V element such as arsenic can be used to passivate the unwanted plasma etch defects, thus reducing the risk of defect related device leakage phenomena.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: August 5, 2008
    Assignee: TECH Semiconductor Singapore Pte Ltd
    Inventors: Arvind Kumar, Keen Wah Chow, Devesh Kumar Datta, Subramanian Krishnan
  • Publication number: 20080124814
    Abstract: A process for fabricating an MOS device specifically a DRAM device, featuring passivation of defects in regions of a semiconductor substrate wherein defects left unpassivated can deleteriously influence data retention time, has been developed. A high density plasma dry etching procedure used to define the DRAM conductive gate electrode can create unwanted defects in a region near the surface of uncovered portions of the semiconductor substrate during the high density plasma procedure over etch cycle. Implantation of a group V element such as arsenic can be used to passivate the unwanted plasma etch defects, thus reducing the risk of defect related device leakage phenomena.
    Type: Application
    Filed: September 5, 2006
    Publication date: May 29, 2008
    Inventors: Arvind Kumar, Keen Wah Chow, Devesh Kumar Datta, Subramanian Krishnan