Patents by Inventor Kei Endo

Kei Endo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11968339
    Abstract: A reading device includes a base on which a read target object is placed, a reader that reads the read target object placed on the base, a first attachment frame to which the reader is attached such that the reader is disposed above the base, an operation unit that is used for operating the reading device by touching, a second attachment frame to which the operation unit is attached such that the operation unit is disposed above the base, and a support frame that has a first surface and a second surface more bendable than the first surface in response to an external force. The first attachment frame is fixed to the first surface of the support frame. The second attachment frame is fixed to the second surface of the support frame.
    Type: Grant
    Filed: December 5, 2021
    Date of Patent: April 23, 2024
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Taisuke Endo, Keigo Shinoto, Maho Satani, Kei Otagiri, Kei Kobayashi
  • Publication number: 20240033863
    Abstract: Provided is a flux for resin-cored solder that is used in resin-cored solder that is supplied into a through hole formed along a central axis of a soldering iron. The flux includes 60% by mass to 99.9% by mass of a rosin ester to a total mass of the flux, 0.1% by mass to 15% by mass of a covalent halogen compound to the total mass of the flux, and more than 0% by mass to 10% by mass of rosin amine, N,N-diethyloctylamine, or rosin amine and N,N-diethyloctylamine to the total mass of the flux.
    Type: Application
    Filed: November 10, 2021
    Publication date: February 1, 2024
    Applicants: Senju Metal Industry Co., Ltd., DENSO CORPORATION
    Inventors: Yoko Kurasawa, Motohiro Onitsuka, Hisashi Tokutomi, Kei Endo, Kazuyuki Hamamoto
  • Publication number: 20230311226
    Abstract: A method for manufacturing a soldered product by soldering a solder object portion, including: a solder supplying step that causes a cylindrical soldering iron having a through hole to contact with the solder object portion to supply a thread solder piece to the solder object portion from the through hole; a heating step that heats the thread solder piece with the cylindrical soldering iron and causes to melt the thread solder piece at the solder object portion; and a curing step that cures a melting object of the thread solder piece to solder the solder object portion. The thread solder piece is composed of a core containing a flux and a coating member containing a solder alloy that covers the core. The flux has a rosin having an acid value which is substantially as a main component thereof.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Applicants: DENSO CORPORATION, SENJU METAL INDUSTRY CO., LTD.
    Inventors: Kei ENDO, Kazuyuki HAMAMOTO, Hisashi TOKUTOMI, Motohiro ONITSUKA, Yoko KURASAWA
  • Publication number: 20220395585
    Abstract: Engineered synthetic RNA-based genetic circuits are provided that are regulated exclusively at the post-transcriptional level.
    Type: Application
    Filed: May 3, 2022
    Publication date: December 15, 2022
    Applicants: Massachusetts Institute of Technology, Kyoto University
    Inventors: Ron Weiss, Liliana Wroblewska, Velia Siciliano, Tasuku Kitada, Maria Hottelet Foley, Katie Bodner, Hirohide Saito, Kei Endo, Darrell J. Irvine, Tyler Wagner, Jacob Becraft
  • Patent number: 11351271
    Abstract: Engineered synthetic RNA-based genetic circuits are provided that are regulated exclusively at the post-transcriptional level.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: June 7, 2022
    Assignees: Massachusetts Institute of Technology, Kyoto University
    Inventors: Ron Weiss, Liliana Wroblewska, Velia Siciliano, Tasuku Kitada, Maria Hottelet Foley, Katie Bodner, Hirohide Saito, Kei Endo, Darrell J. Irvine, Tyler Wagner, Jacob Becraft
  • Publication number: 20200232049
    Abstract: A method is provided for distinguishing living cells in a living state with high accuracy. Provided is a method for distinguishing a desired cell type from a cell group comprising two or more types of cells, using the expression of miRNA as an indicator, wherein the method comprises the following steps: (1) a step of introducing mRNA comprising a marker gene operably linked to the target sequence of miRNA used as an indicator into a cell group; and (2) a step of distinguishing a cell type, using the translation level of the marker gene as an indicator.
    Type: Application
    Filed: February 13, 2020
    Publication date: July 23, 2020
    Inventors: HIROHIDE SAITO, KEI ENDO
  • Patent number: 10604770
    Abstract: A method for extracting differentiated cells from a cell population comprising undifferentiated cells after induction of the differentiation of pluripotent stem cells. A method for extracting differentiated cells from a cell population, comprising the following steps: (1) a step of introducing, into a cell population, mRNA comprising a marker gene operably linked to the target sequence of miRNA specifically expressed in pluripotent stem cells; and (2) a step of extracting cells in which the marker gene has been translated.
    Type: Grant
    Filed: July 16, 2015
    Date of Patent: March 31, 2020
    Assignee: KYOTO UNIVERSITY
    Inventors: Hirohide Saito, Kei Endo, Shota Katayama, Callum Parr
  • Patent number: 10590492
    Abstract: A method for distinguishing living cells in a living state with high accuracy. A method for distinguishing a desired cell type from a cell group comprising two or more types of cells, using the expression of miRNA as an indicator, wherein the method comprises the following steps: (1) a step of introducing mRNA comprising a marker gene operably linked to the target sequence of miRNA used as an indicator into a cell group; and (2) a step of distinguishing a cell type, using the translation level of the marker gene as an indicator.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: March 17, 2020
    Assignee: KYOTO UNIVERSITY
    Inventors: Hirohide Saito, Kei Endo
  • Publication number: 20200056248
    Abstract: An object of the present invention is to provide a method for increasing the purity of a type of tissue cell such as an endothelial cell, a hepatocyte, or an insulin-producing cell. The present invention solves the problem by providing a method comprising a step of introducing, into a cell population, an mRNA comprising a nucleic acid sequence recognized by an miRNA specifically expressed in endothelial cells, hepatocytes, or insulin-producing cells.
    Type: Application
    Filed: October 22, 2019
    Publication date: February 20, 2020
    Inventors: Yoshinori Yoshida, Hirohide Saito, Kenji Miki, Kei Endo, Seiya Takahashi
  • Patent number: 10538740
    Abstract: An object of the present invention is to provide a novel method for sorting cardiomyocytes. Another object of the present invention is to provide a method for producing high-purity cardiomyocytes and a kit used therefor. The present invention provides a method for sorting cardiomyocytes, comprising a step of introducing miRNA-responsive mRNA into a cell group, wherein the miRNA-responsive mRNA consists of a sequence comprising the following (i) and (ii): (i) a nucleic acid specifically recognized by miRNA specifically expressed in cardiomyocytes, and (ii) a nucleic acid corresponding to the coding region of a gene, wherein translation of (ii) the nucleic acid corresponding to the coding region of a gene into protein is regulated by the nucleic acid sequence in (i) above, thereby achieving the aforementioned objects.
    Type: Grant
    Filed: March 20, 2015
    Date of Patent: January 21, 2020
    Assignee: Kyoto University
    Inventors: Yoshinori Yoshida, Hirohide Saito, Kenji Miki, Kei Endo, Seiya Takahashi
  • Patent number: 10501811
    Abstract: An object of the present invention is to provide a method for increasing the purity of a type of tissue cell such as an endothelial cell, a hepatocyte, or an insulin-producing cell. The present invention solves the problem by providing a method comprising a step of introducing, into a cell population, an mRNA comprising a nucleic acid sequence recognized by an miRNA specifically expressed in endothelial cells, hepatocytes, or insulin-producing cells.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: December 10, 2019
    Assignee: KYOTO UNIVERSITY
    Inventors: Yoshinori Yoshida, Hirohide Saito, Kenji Miki, Kei Endo, Seiya Takahashi
  • Publication number: 20190151474
    Abstract: Engineered synthetic RNA-based genetic circuits are provided that are regulated exclusively at the post-transcriptional level.
    Type: Application
    Filed: September 8, 2015
    Publication date: May 23, 2019
    Applicants: Massachusetts Institute of Technology, Kyoto University
    Inventors: Ron Weiss, Liliana Wroblewska, Velia Siciliano, Tasuku Kitada, Maria Hottelet Foley, Katie Bodner, Hirohide Saito, Kei Endo, Darrell J. Irvine, Tyler Wagner, Jacob Becraft
  • Publication number: 20190144873
    Abstract: A translational control method using an RNA-protein interaction motif is provided. The method comprises a step of introducing an mRNA having: a 5?UTR regulation structure comprising: (1) a cap structure at the 5? terminus, (2) a spacer positioned on the 3? side of the cap structure, and (3) one or more RNA motifs positioned on the 3? side of the spacer, which comprises an RNA-protein interaction motif-derived nucleotide sequence or a variant thereof; and a nucleotide sequence encoding a target protein gene on the 3? side of the 5?UTR regulation structure, into a cell in the presence of a protein specifically binding to the RNA motifs, wherein a translational level is decreased as the number of bases of the spacer decreases, and the translational level is decreased as the number of the RNA motifs increases.
    Type: Application
    Filed: January 25, 2019
    Publication date: May 16, 2019
    Applicant: Kyoto University
    Inventors: Hirohide Saito, Kei Endo, Tan Inoue
  • Patent number: 10227596
    Abstract: A translational control method using an RNA-protein interaction motif is provided. The method comprises a step of introducing an mRNA having: a 5?UTR regulation structure comprising: (1) a cap structure at the 5? terminus, (2) a spacer positioned on the 3? side of the cap structure, and (3) one or more RNA motifs positioned on the 3? side of the spacer, which comprises an RNA-protein interaction motif-derived nucleotide sequence or a variant thereof; and a nucleotide sequence encoding a target protein gene on the 3? side of the 5?UTR regulation structure, into a cell in the presence of a protein specifically binding to the RNA motifs, wherein a translational level is decreased as the number of bases of the spacer decreases, and the translational level is decreased as the number of the RNA motifs increases.
    Type: Grant
    Filed: August 24, 2016
    Date of Patent: March 12, 2019
    Assignee: Kyoto University
    Inventors: Hirohide Saito, Kei Endo, Tan Inoue
  • Publication number: 20180296702
    Abstract: Engineered synthetic RNA-based genetic circuits are provided that are regulated exclusively at the post-transcriptional level.
    Type: Application
    Filed: September 8, 2015
    Publication date: October 18, 2018
    Applicants: Massachusetts Institute of Technology, Kyoto University
    Inventors: Ron Weiss, Liliana Wroblewska, Velia Siciliano, Tasuku Kitada, Maria Hottelet Foley, Katie Bodner, Hirohide Saito, Kei Endo, Darrell J. Irvine, Tyler Wagner, Jacob Becraft
  • Publication number: 20180100203
    Abstract: An object of the present invention is to provide a method for increasing the purity of a type of tissue cell such as an endothelial cell, a hepatocyte, or an insulin-producing cell. The present invention solves the problem by providing a method comprising a step of introducing, into a cell population, an mRNA comprising a nucleic acid sequence recognized by an miRNA specifically expressed in endothelial cells, hepatocytes, or insulin-producing cells.
    Type: Application
    Filed: April 22, 2016
    Publication date: April 12, 2018
    Inventors: Yoshinori Yoshida, Hirohide Saito, Kenji Miki, Kei Endo, Seiya Takahashi
  • Publication number: 20170369846
    Abstract: An object of the present invention is to provide a novel method for sorting cardiomyocytes. Another object of the present invention is to provide a method for producing high-purity cardiomyocytes and a kit used therefor. The present invention provides a method for sorting cardiomyocytes, comprising a step of introducing miRNA-responsive mRNA into a cell group, wherein the miRNA-responsive mRNA consists of a sequence comprising the following (i) and (ii): (i) a nucleic acid specifically recognized by miRNA specifically expressed in cardiomyocytes, and (ii) a nucleic acid corresponding to the coding region of a gene, wherein translation of (ii) the nucleic acid corresponding to the coding region of a gene into protein is regulated by the nucleic acid sequence in (i) above, thereby achieving the aforementioned objects.
    Type: Application
    Filed: March 20, 2015
    Publication date: December 28, 2017
    Inventors: Yoshinori Yoshida, Hirohide Saito, Kenji Miki, Kei Endo, Seiya Takahashi
  • Publication number: 20170342439
    Abstract: A method for extracting differentiated cells from a cell population comprising undifferentiated cells after induction of the differentiation of pluripotent stem cells. A method for extracting differentiated cells from a cell population, comprising the following steps: (1) a step of introducing, into a cell population, mRNA comprising a marker gene operably linked to the target sequence of miRNA specifically expressed in pluripotent stem cells; and (2) a step of extracting cells in which the marker gene has been translated.
    Type: Application
    Filed: July 16, 2015
    Publication date: November 30, 2017
    Inventors: Hirohide Saito, Kei Endo, Shota Katayama, Callum Parr
  • Publication number: 20170051292
    Abstract: A translational control method using an RNA-protein interaction motif is provided. The method comprises a step of introducing an mRNA having: a 5?UTR regulation structure comprising: (1) a cap structure at the 5? terminus, (2) a spacer positioned on the 3? side of the cap structure, and (3) one or more RNA motifs positioned on the 3? side of the spacer, which comprises an RNA-protein interaction motif-derived nucleotide sequence or a variant thereof; and a nucleotide sequence encoding a target protein gene on the 3? side of the 5?UTR regulation structure, into a cell in the presence of a protein specifically binding to the RNA motifs, wherein a translational level is decreased as the number of bases of the spacer decreases, and the translational level is decreased as the number of the RNA motifs increases.
    Type: Application
    Filed: August 24, 2016
    Publication date: February 23, 2017
    Applicant: KYOTO UNIVERSITY
    Inventors: Hirohide Saito, Kei ENDO, Tan INOUE
  • Publication number: 20170016077
    Abstract: A method for distinguishing living cells in a living state with high accuracy. A method for distinguishing a desired cell type from a cell group comprising two or more types of cells, using the expression of miRNA as an indicator, wherein the method comprises the following steps: (1) a step of introducing mRNA comprising a marker gene operably linked to the target sequence of miRNA used as an indicator into a cell group; and (2) a step of distinguishing a cell type, using the translation level of the marker gene as an indicator.
    Type: Application
    Filed: January 9, 2015
    Publication date: January 19, 2017
    Inventors: Hirohide Saito, Kei Endo