Patents by Inventor Kei Shimura

Kei Shimura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20190145892
    Abstract: Provided are an imaging method and device for imaging using far infrared light that make it possible to quickly image a subject without producing damage or a non-linear phenomenon in the subject. A variable-frequency coherent light source is used, illumination light from the light source is irradiated onto a linear area on an imaging subject, transmitted or reflected light is used to form an image of the imaging subject, a non-linear optical crystal is used for wavelength conversion, and a one-dimensional or two-dimensional array sensor is used to image the imaging subject while the imaging subject is moved in at least one direction.
    Type: Application
    Filed: January 11, 2019
    Publication date: May 16, 2019
    Inventor: Kei SHIMURA
  • Patent number: 10203278
    Abstract: Provided are an imaging method and device for imaging using far infrared light that make it possible to quickly image a subject without producing damage or a non-linear phenomenon in the subject. A variable-frequency coherent light source is used, illumination light from the light source is irradiated onto a linear area on an imaging subject, transmitted or reflected light is used to form an image of the imaging subject, a non-linear optical crystal is used for wavelength conversion, and a one-dimensional or two-dimensional array sensor is used to image the imaging subject while the imaging subject is moved in at least one direction.
    Type: Grant
    Filed: January 7, 2015
    Date of Patent: February 12, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Kei Shimura
  • Patent number: 10113959
    Abstract: A terahertz wave generating device according to the present invention comprises a fixed-wavelength pump optical laser that generates a single wavelength pump beam, a variable-wavelength laser that emits a seed beam and is capable of making the wavelength of the seed beam variable, a delay element that delays pulses of the pump beam and a first non-linear crystal that generates terahertz waves by receiving the seed beam, a first pump beam that is not delayed by the delay element and a second pump beam that is delayed by the delay element.
    Type: Grant
    Filed: March 3, 2015
    Date of Patent: October 30, 2018
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Kenji Aiko, Kei Shimura
  • Publication number: 20180209848
    Abstract: This far-infrared spectroscopy device is provided with: a variable wavelength far-infrared light source that generates first far-infrared light; an illuminating optical system that irradiates a sample with the first far-infrared light; a detecting nonlinear optical crystal that converts second far-infrared light into near-infrared light using pump light, said second far-infrared light having been transmitted from the sample; and a far-infrared image-forming optical system that forms an image of the sample in the detecting nonlinear optical crystal. The irradiation position of the first far-infrared light on the sample does not depend on the wavelength of the first far-infrared light.
    Type: Application
    Filed: July 22, 2015
    Publication date: July 26, 2018
    Inventors: Kei SHIMURA, Mizuki OKU, Kenji AIKO
  • Patent number: 9976966
    Abstract: To increase the illumination efficiency by facilitating the change of the incident angle of illumination light with a narrow illumination width according to an inspection object and enabling an illumination region to be effectively irradiated with light, provided is a defect inspection method for obliquely irradiating a sample mounted on a table that is moving continuously in one direction with illumination light, collecting scattered light from the sample obliquely irradiated with the illumination light, detecting an image of the surface of the sample formed by the scattered light, processing a signal obtained by detecting the image formed by the scattered light, and extracting a defect candidate, wherein the oblique irradiation of the light is implemented by linearly collecting light emitted from a light source, and obliquely projecting the collected light onto the surface of the sample, thereby illuminating a linear region on the surface of the sample.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: May 22, 2018
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Yukihiro Shibata, Kei Shimura, Sachio Uto, Toshifumi Honda
  • Publication number: 20180031469
    Abstract: A terahertz wave generating device according to the present invention comprises a fixed-wavelength pump optical laser that generates a single wavelength pump beam, a variable-wavelength laser that emits a seed beam and is capable of making the wavelength of the seed beam variable, a delay element that delays pulses of the pump beam and a first non-linear crystal that generates terahertz waves by receiving the seed beam, a first pump beam that is not delayed by the delay element and a second pump beam that is delayed by the delay element.
    Type: Application
    Filed: March 3, 2015
    Publication date: February 1, 2018
    Applicant: Hitachi High- Technologies Corporation
    Inventors: Kenji AIKO, Kei SHIMURA
  • Patent number: 9851548
    Abstract: The present invention allows observation or capturing of a high-contrast image of a sample for which sufficient contrast cannot be obtained in bright-field observation, such as a wafer having a pattern with a small pattern height. According to the present invention, a sample is illuminated through an objective lens used for capturing an image, and an imaging optics are provided with an aperture filter so that an image is captured while light of bright-field observation components is significantly attenuated.
    Type: Grant
    Filed: July 19, 2012
    Date of Patent: December 26, 2017
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kei Shimura, Tetsuya Niibori, Mizuki Oku, Naoya Nakai
  • Publication number: 20170102338
    Abstract: To increase the illumination efficiency by facilitating the change of the incident angle of illumination light with a narrow illumination width according to an inspection object and enabling an illumination region to be effectively irradiated with light, provided is a defect inspection method for obliquely irradiating a sample mounted on a table that is moving continuously in one direction with illumination light, collecting scattered light from the sample obliquely irradiated with the illumination light, detecting an image of the surface of the sample formed by the scattered light, processing a signal obtained by detecting the image formed by the scattered light, and extracting a defect candidate, wherein the oblique irradiation of the light is implemented by linearly collecting light emitted from a light source, and obliquely projecting the collected light onto the surface of the sample, thereby illuminating a linear region on the surface of the sample.
    Type: Application
    Filed: October 21, 2016
    Publication date: April 13, 2017
    Inventors: Yukihiro SHIBATA, Kei SHIMURA, Sachio UTO, Toshifumi HONDA
  • Patent number: 9513228
    Abstract: To increase the illumination efficiency by facilitating the change of the incident angle of illumination light with a narrow illumination width according to an inspection object and enabling an illumination region to be effectively irradiated with light, provided is a defect inspection method for obliquely irradiating a sample mounted on a table that is moving continuously in one direction with illumination light, collecting scattered light from the sample obliquely irradiated with the illumination light, detecting an image of the surface of the sample formed by the scattered light, processing a signal obtained by detecting the image formed by the scattered light, and extracting a defect candidate, wherein the oblique irradiation of the light is implemented by linearly collecting light emitted from a light source, and obliquely projecting the collected light onto the surface of the sample, thereby illuminating a linear region on the surface of the sample.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 6, 2016
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Yukihiro Shibata, Kei Shimura, Sachio Uto, Toshifumi Honda
  • Publication number: 20160299064
    Abstract: Provided are an imaging method and device for imaging using far infrared light that make it possible to quickly image a subject without producing damage or a non-linear phenomenon in the subject. A variable-frequency coherent light source is used, illumination light from the light source is irradiated onto a linear area on an imaging subject, transmitted or reflected light is used to form an image of the imaging subject, a non-linear optical crystal is used for wavelength conversion, and a one-dimensional or two-dimensional array sensor is used to image the imaging subject while the imaging subject is moved in at least one direction.
    Type: Application
    Filed: January 7, 2015
    Publication date: October 13, 2016
    Applicant: Hitachi High-Technologies Corporation
    Inventor: Kei SHIMURA
  • Patent number: 9194795
    Abstract: Method for realizing an inspection with short wavelength, high power light source and large numerical aperture, high performance optics to improve defect inspection sensitivity is disclosed. Short wavelength high power laser is realized by using a pulse oscillation type laser suitable for generation of high output power in a short-wavelength region. In addition, a spectral bandwidth of the laser is narrowed down so that amount of chromatic aberration of detection optics with single glass material (i.e. without compensation of chromatic aberration) is lowered to permissible level. Using highly workable glass material to construct the detection optics enables necessary surface accuracy or profile irregularity conditions to be met, even if the number of lenses is increased for large NA or the lens doesn't have a rotationally symmetrical aperture.
    Type: Grant
    Filed: November 24, 2014
    Date of Patent: November 24, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Kei Shimura
  • Patent number: 9164042
    Abstract: The present invention provides a device for detecting foreign matter and a method for detecting foreign matter to detect a foreign matter on a surface of an object such as a film of an electrode mixture etc. or a foreign matter contained in the object, thereby to improve the reliability of the object. By irradiating an object with a terahertz illumination light 100 (wavelength of 4 ?m to 10 mm) and detecting a scattered light 660 from an electrode 10 as an example of the object by a scattered light detector 200, a foreign matter on a surface of the electrode 10 or contained in the electrode 10, for example, a metal foreign matter 720, is detected. The electrode 10 is one in which electrode mixture layers 700 each including an active material 701, conductive additive and a binder as components are coated on both surfaces of a collector 710. The scattered light 660 results from a part of a transmitted light 656 reflected by the metal foreign matter 720.
    Type: Grant
    Filed: February 1, 2012
    Date of Patent: October 20, 2015
    Assignee: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kenji Aiko, Shigeya Tanaka, Yasuko Aoki, Hiroshi Kawaguchi, Kei Shimura
  • Patent number: 9151719
    Abstract: When it is tried to detect a microscopic defect, it is desired that the width of the above-mentioned illuminated region in the minor axis direction should be short. In the related art, although an illuminated region is formed by converging light by some means, it is not easy to form an illuminated region with a narrower width. This is because various aberrations possessed by optical elements themselves used for convergence, aberrations possessed by other optical elements disposed on optical paths, assembly errors, and the like have undesired influence on the formation of linear illumination. In the related art, sufficient consideration has not been paid to the above points. The present invention is characterized in that it includes a system for changing the wavefront of light.
    Type: Grant
    Filed: November 19, 2012
    Date of Patent: October 6, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Koichi Taniguchi, Kei Shimura, Sachio Uto
  • Publication number: 20150102229
    Abstract: Method for realizing an inspection with short wavelength, high power light source and large numerical aperture, high performance optics to improve defect inspection sensitivity is disclosed. Short wavelength high power laser is realized by using a pulse oscillation type laser suitable for generation of high output power in a short-wavelength region. In addition, a spectral bandwidth of the laser is narrowed down so that amount of chromatic aberration of detection optics with single glass material (i.e. without compensation of chromatic aberration) is lowered to permissible level. Using highly workable glass material to construct the detection optics enables necessary surface accuracy or profile irregularity conditions to be met, even if the number of lenses is increased for large NA or the lens doesn't have a rotationally symmetrical aperture.
    Type: Application
    Filed: November 24, 2014
    Publication date: April 16, 2015
    Inventor: Kei SHIMURA
  • Patent number: 8976347
    Abstract: Light that is scattered by a defect on a wafer is very weak, and a PMT and an MPPC are used as detection methods for measuring the weak light with high speed and sensitivity. The methods have a function of photoelectronically converting the weak light and multiplying an electron, but have a problem in that a signal light is lost and an S/N ratio is reduced because the quantum efficiency of the photoelectron conversion is as low as 50% or less. Direct light is amplified prior to the photoelectron conversion. The optical amplification is an amplification method in which the signal light and light of pump light are introduced into a rare-earth doped fiber, a stimulated emission is caused, and the signal light is amplified. In the present invention, the optical amplification is used. The amplification factor is changed according to various conditions.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 10, 2015
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Mizuki Oku, Kei Shimura
  • Publication number: 20150022806
    Abstract: To increase the illumination efficiency by facilitating the change of the incident angle of illumination light with a narrow illumination width according to an inspection object and enabling an illumination region to be effectively irradiated with light, provided is a defect inspection method for obliquely irradiating a sample mounted on a table that is moving continuously in one direction with illumination light, collecting scattered light from the sample obliquely irradiated with the illumination light, detecting an image of the surface of the sample formed by the scattered light, processing a signal obtained by detecting the image formed by the scattered light, and extracting a defect candidate, wherein the oblique irradiation of the light is implemented by linearly collecting light emitted from a light source, and obliquely projecting the collected light onto the surface of the sample, thereby illuminating a linear region on the surface of the sample.
    Type: Application
    Filed: October 22, 2012
    Publication date: January 22, 2015
    Inventors: Yukihiro Shibata, Kei Shimura, Sachio Uto, Toshifumi Honda
  • Patent number: 8921798
    Abstract: Method for realizing an inspection with short wavelength, high power light source and large numerical aperture, high performance optics to improve defect inspection sensitivity is disclosed. Short wavelength high power laser is realized by using a pulse oscillation type laser suitable for generation of high output power in a short-wavelength region, In addition, a spectral bandwidth of the laser is narrowed down so that amount of chromatic aberration of detection optics with single glass material (i.e. without compensation of chromatic aberration) is lowered to permissible level. Using highly workable glass material to construct the detection optics enables necessary surface accuracy or profile irregularity conditions to be met, even if the number of lenses is increased for large NA or the lens doesn't have a rotationally symmetrical aperture.
    Type: Grant
    Filed: March 7, 2013
    Date of Patent: December 30, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Kei Shimura
  • Publication number: 20140333923
    Abstract: When it is tried to detect a microscopic defect, it is desired that the width of the above-mentioned illuminated region in the minor axis direction should be short. In the related art, although an illuminated region is formed by converging light by some means, it is not easy to form an illuminated region with a narrower width. This is because various aberrations possessed by optical elements themselves used for convergence, aberrations possessed by other optical elements disposed on optical paths, assembly errors, and the like have undesired influence on the formation of linear illumination. In the related art, sufficient consideration has not been paid to the above points. The present invention is characterized in that it includes a system for changing the wavefront of light.
    Type: Application
    Filed: November 19, 2012
    Publication date: November 13, 2014
    Inventors: Koichi Taniguchi, Kei Shimura, Sachio Uto
  • Patent number: 8879821
    Abstract: The present invention provides a defect inspection system which enables an improvement in the efficiency of spatial filter settings, and at the same time enables automation of the spatial filter settings. An adjustable field-of-view diaphragm is narrowed to obtain an image of a spatial filter surface by use of an observation camera, and pixels of the image are classified into a plurality of groups according to the brightness level of bright spots of diffracted light. A spatial filter is set in such a manner that a group, the brightness level of which is highest, is light-shielded, and an observation image is then captured. Whether or not a repetitive pattern remains in the captured image is determined, and when it is determined that a repetitive pattern remains, the settings of the spatial filter are changed.
    Type: Grant
    Filed: December 27, 2010
    Date of Patent: November 4, 2014
    Assignee: Hitachi High-Technologies Corporation
    Inventor: Kei Shimura
  • Publication number: 20140210983
    Abstract: The present invention allows observation or capturing of a high-contrast image of a sample for which sufficient contrast cannot be obtained in bright-field observation, such as a wafer having a pattern with a small pattern height. According to the present invention, a sample is illuminated through an objective lens used for capturing an image, and an imaging optics are provided with an aperture filter so that an image is captured while light of bright-field observation components is significantly attenuated.
    Type: Application
    Filed: July 19, 2012
    Publication date: July 31, 2014
    Applicant: HITACHI HIGH-TECHNOLOGIES CORPORATION
    Inventors: Kei Shimura, Tetsuya Niibori, Mizuki Oku, Naoya Nakai