Patents by Inventor Kei Tanabe

Kei Tanabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927648
    Abstract: An object of the present invention is to provide a magnetic sensor less subject to an environmental magnetic field. A magnetic sensor includes magnetic detection elements MR1 to MR4 positioned on a first plane P1 and a magnetic member 30A provided on a second plane P2. The magnetic member 30A includes first and second leg parts 41 and 42 and a first main body part 51 positioned between the first and second leg parts 41 and 42 so as to form a first space 61 between itself and the second plane P2. The magnetic detection elements MR1 to MR4 are covered with the first main body part 51. According to the present invention, magnetic field to be detected is collected to the first and second leg parts 41 and 42, and the magnetic detection elements MR1 to MR4 are covered with the first main body part 51, thereby allowing an environmental magnetic field acting as noise to bypass the magnetic detection elements MR1 to MR4 through the first main body part 51.
    Type: Grant
    Filed: April 3, 2023
    Date of Patent: March 12, 2024
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Patent number: 11898980
    Abstract: A gas sensor includes a feedback circuit part and a sensor circuit part. The feedback circuit part includes a reference resistor and a first temperature sensing element which are connected in series, a first heater resistor that heats the first temperature sensing element, and a first amplifier circuit that controls the amount of current to flow in the first heater resistor based on an internal potential. The sensor circuit part includes a second temperature sensing element and a second heater resistor that heats the second temperature sensing element. A current according to the output of the first amplifier circuit flows in the second heater resistor. With this configuration, it is possible to automatically change the amount of current to flow in the second heater resistor according to ambient temperature without digital processing to thereby heat the second temperature sensing element to a constant temperature.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: February 13, 2024
    Assignee: TDK Corporation
    Inventor: Kei Tanabe
  • Publication number: 20230296577
    Abstract: Disclosed herein is a sensor module that includes a substrate having a top surface and a back surface, a sensor element mounted on the top surface of the substrate, an external terminal formed on the back surface of the substrate, and a case fixed to the substrate so as to cover the sensor element. The case has a top plate part having a plurality of through holes. The top plate part has a center area having no through holes and a through hole formation area having the plurality of through holes, the through hole formation area being positioned so as to surround the center area.
    Type: Application
    Filed: May 26, 2023
    Publication date: September 21, 2023
    Inventor: Kei TANABE
  • Publication number: 20230258746
    Abstract: An object of the present invention is to provide a magnetic sensor less subject to an environmental magnetic field. A magnetic sensor includes magnetic detection elements MR1 to MR4 positioned on a first plane P1 and a magnetic member 30A provided on a second plane P2. The magnetic member 30A includes first and second leg parts 41 and 42 and a first main body part 51 positioned between the first and second leg parts 41 and 42 so as to form a first space 61 between itself and the second plane P2. The magnetic detection elements MR1 to MR4 are covered with the first main body part 51. According to the present invention, magnetic field to be detected is collected to the first and second leg parts 41 and 42, and the magnetic detection elements MR1 to MR4 are covered with the first main body part 51, thereby allowing an environmental magnetic field acting as noise to bypass the magnetic detection elements MR1 to MR4 through the first main body part 51.
    Type: Application
    Filed: April 3, 2023
    Publication date: August 17, 2023
    Applicant: TDK CORPORATION
    Inventor: Kei TANABE
  • Patent number: 11703491
    Abstract: Disclosed herein is a sensor module that includes a substrate having a top surface and a back surface, a sensor element mounted on the top surface of the substrate, an external terminal formed on the back surface of the substrate, and a case fixed to the substrate so as to cover the sensor element. The case has a top plate part having a plurality of through holes. The top plate part has a center area having no through holes and a through hole formation area having the plurality of through holes, the through hole formation area being positioned so as to surround the center area.
    Type: Grant
    Filed: June 28, 2021
    Date of Patent: July 18, 2023
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Patent number: 11644517
    Abstract: An object of the present invention is to provide a magnetic sensor less subject to an environmental magnetic field. A magnetic sensor includes magnetic detection elements MR1 to MR4 positioned on a first plane P1 and a magnetic member 30A provided on a second plane P2. The magnetic member 30A includes first and second leg parts 41 and 42 and a first main body part 51 positioned between the first and second leg parts 41 and 42 so as to form a first space 61 between itself and the second plane P2. The magnetic detection elements MR1 to MR4 are covered with the first main body part 51. According to the present invention, magnetic field to be detected is collected to the first and second leg parts 41 and 42, and the magnetic detection elements MR1 to MR4 are covered with the first main body part 51, thereby allowing an environmental magnetic field acting as noise to bypass the magnetic detection elements MR1 to MR4 through the first main body part 51.
    Type: Grant
    Filed: January 5, 2022
    Date of Patent: May 9, 2023
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Patent number: 11609284
    Abstract: The present invention relates to a magnetic sensor which can improve the detection precision of a weak magnetic field and can be downsized. A magnetic sensor is provided with a magnetic body changing the direction of a magnetic field input to a magnetoresistance effect element in the vicinity of the magnetoresistance effect element in which the resistance value changes according to the direction of the input magnetic field, the magnetic body has a mean for changing the direction of a magnetic field on the surface at a side where the magnetoresistance effect element is formed. The chamfer part of the magnetic body may be chamfered with a shape having at least one flat surface.
    Type: Grant
    Filed: March 14, 2016
    Date of Patent: March 21, 2023
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Publication number: 20230037430
    Abstract: An outer structure of a magnetic circuit is held inside a holder recess of a magnetic circuit holder of a frame. A pressing portion is screw-fixed to a mounting surface of the magnetic circuit holder. Elastically deformable pressing arms are formed at the pressing portion, and the pressing arms press a restriction surface of the outer structure of the magnetic circuit.
    Type: Application
    Filed: July 7, 2022
    Publication date: February 9, 2023
    Applicant: ALPS ALPINE CO., LTD.
    Inventors: Haruki Uesugi, Kei Tanabe, Yusuke Yoshida
  • Publication number: 20220128636
    Abstract: An object of the present invention is to provide a magnetic sensor less subject to an environmental magnetic field. A magnetic sensor includes magnetic detection elements MR1 to MR4 positioned on a first plane P1 and a magnetic member 30A provided on a second plane P2. The magnetic member 30A includes first and second leg parts 41 and 42 and a first main body part 51 positioned between the first and second leg parts 41 and 42 so as to form a first space 61 between itself and the second plane P2. The magnetic detection elements MR1 to MR4 are covered with the first main body part 51. According to the present invention, magnetic field to be detected is collected to the first and second leg parts 41 and 42, and the magnetic detection elements MR1 to MR4 are covered with the first main body part 51, thereby allowing an environmental magnetic field acting as noise to bypass the magnetic detection elements MR1 to MR4 through the first main body part 51.
    Type: Application
    Filed: January 5, 2022
    Publication date: April 28, 2022
    Applicant: TDK CORPORATION
    Inventor: Kei TANABE
  • Publication number: 20220107285
    Abstract: A gas sensor includes a feedback circuit part and a sensor circuit part. The feedback circuit part includes a reference resistor and a first temperature sensing element which are connected in series, a first heater resistor that heats the first temperature sensing element, and a first amplifier circuit that controls the amount of current to flow in the first heater resistor based on an internal potential. The sensor circuit part includes a second temperature sensing element and a second heater resistor that heats the second temperature sensing element. A current according to the output of the first amplifier circuit flows in the second heater resistor. With this configuration, it is possible to automatically change the amount of current to flow in the second heater resistor according to ambient temperature without digital processing to thereby heat the second temperature sensing element to a constant temperature.
    Type: Application
    Filed: September 24, 2019
    Publication date: April 7, 2022
    Inventor: Kei TANABE
  • Patent number: 11269024
    Abstract: To provide a magnetic sensor capable of supporting a magnetic block stably and allowing a further size reduction of the sensor chip. A magnetic sensor includes a sensor chip and a magnetic block which are mounted on a circuit board. The sensor chip is mounted on the circuit board such that a mounted surface thereof faces a mounting surface, and the magnetic block is mounted on the circuit board such that first and second surfaces and face an element formation surface and the mounting surface, respectively. The magnetic block has a cutout portion, and some of terminal electrodes E11 to E16 are disposed within a space formed by the cutout portion. According to the present invention, the magnetic block can be supported stably. In addition, the presence of the cutout portion in the magnetic block allows a further size reduction of the sensor chip.
    Type: Grant
    Filed: May 14, 2018
    Date of Patent: March 8, 2022
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Patent number: 11249149
    Abstract: An object of the present invention is to provide a magnetic sensor less subject to an environmental magnetic field. A magnetic sensor includes magnetic detection elements MR1 to MR4 positioned on a first plane P1 and a magnetic member 30A provided on a second plane P2. The magnetic member 30A includes first and second leg parts 41 and 42 and a first main body part 51 positioned between the first and second leg parts 41 and 42 so as to form a first space 61 between itself and the second plane P2. The magnetic detection elements MR1 to MR4 are covered with the first main body part 51. According to the present invention, magnetic field to be detected is collected to the first and second leg parts 41 and 42, and the magnetic detection elements MR1 to MR4 are covered with the first main body part 51, thereby allowing an environmental magnetic field acting as noise to bypass the magnetic detection elements MR1 to MR4 through the first main body part 51.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: February 15, 2022
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Publication number: 20220018819
    Abstract: Disclosed herein is a sensor module that includes a substrate having a top surface and a back surface, a sensor element mounted on the top surface of the substrate, an external terminal formed on the back surface of the substrate, and a case fixed to the substrate so as to cover the sensor element. The case has a top plate part having a plurality of through holes. The top plate part has a center area having no through holes and a through hole formation area having the plurality of through holes, the through hole formation area being positioned so as to surround the center area.
    Type: Application
    Filed: June 28, 2021
    Publication date: January 20, 2022
    Inventor: Kei TANABE
  • Patent number: 11199593
    Abstract: A magnetic sensor suppressing bias magnetic field effects includes a magnetic detecting unit including first to fourth magneto-resistive elements to which a first magnetic field to be detected is applied, a differential amplifier into which the output voltage of the magnetic detecting unit is input, a first magnetic field generating conductor which, by a first feedback current output by the differential amplifier, applies to the magnetic detecting unit a second magnetic field to cancel the first magnetic field detected by the magnetic detecting unit, a bias magnetic field detector which detects a bias magnetic field applied to the magnetic detecting unit and outputs a second feedback current corresponding to the bias magnetic field, and a second magnetic field generating conductor which, by the second negative feedback current, applies to the magnetic detecting unit a correcting magnetic field to cancel the bias magnetic field detected by the magnetic detecting unit.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: December 14, 2021
    Assignee: TDK Corporation
    Inventors: Kei Tanabe, Akihiro Unno
  • Patent number: 11073576
    Abstract: An object of the present invention is to selectively detect a detection magnetic field without separately providing a sensor for detecting an environmental magnetic field. A magnetic field detection device includes a magnetic field detection unit 10 that generates an output signal S1 according to a magnetic field, a first signal generation unit 20 that extracts a predetermined frequency component from the output signal S1 and generates a cancel signal S2 based on the predetermined frequency component, a first magnetic field generation unit 40 that applies a first cancel magnetic field to the magnetic field detection unit 10 based on the cancel signal S2, and a second signal generation unit 30 that generates a detection signal S3 based on the output signal S1 of the magnetic field detection unit 10 to which the first cancel magnetic field is applied.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: July 27, 2021
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Patent number: 11022660
    Abstract: The size and cost of a magnetic sensor suitable for closed loop control is reduced. A magnetic sensor includes a magnetoresistive effect element that is electrically connected between terminals and extends in the x-direction and a magnetic member that is electrically connected between the terminals and extends in the x-direction along the magnetoresistive effect element. The magnetoresistive effect element is disposed offset with respect to the center position of the magnetic member in the y-direction. Magnetic flux to be detected is collected by a magnetic member and current is made to flow in the magnetic member in accordance with the resistance value of the magnetoresistive effect element, achieving closed loop control. The magnetic member functions both as a magnetism collection function and as a cancel coil, which reduces the number of elements required, and which also achieves a reduction in size and cost.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 1, 2021
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Patent number: 11022659
    Abstract: An object of the present invention is to provide a magnetic sensor that can reduce influences of a disturbance magnetic field while ensuring high detection sensitivity. The magnetic sensor includes a sensor chip 20 having an element formation surface 20S on which magnetic detection elements MR3, MR4 are formed, a first magnetic member 31 placed on the element formation surface 20S and having a first height H1 as a height from the element formation surface 20S, and a second magnetic member 32 located on an opposite side of the magnetic detection elements MR3, MR4 to the first magnetic member 31 and having a second height H2 lower than the first height H1. According to the present invention, because the height H2 of the second magnetic member 32 is lower than that of the first magnetic member 31, a detection magnetic field attracted to the second magnetic member 32 can be reduced while a disturbance magnetic field is shielded by the second magnetic member 32.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: June 1, 2021
    Assignee: TDK CORPORATION
    Inventors: Yuki Asazuma, Kei Tanabe, Akihiro Unno, Atsushi Matsuda, Masashi Takahashi
  • Publication number: 20210003642
    Abstract: To provide a magnetic sensor capable of supporting a magnetic block stably and allowing a further size reduction of the sensor chip. A magnetic sensor includes a sensor chip and a magnetic block which are mounted on a circuit board. The sensor chip is mounted on the circuit board such that a mounted surface thereof faces a mounting surface, and the magnetic block is mounted on the circuit board such that first and second surfaces and face an element formation surface and the mounting surface, respectively. The magnetic block has a cutout portion, and some of terminal electrodes E11 to E16 are disposed within a space formed by the cutout portion. According to the present invention, the magnetic block can be supported stably. In addition, the presence of the cutout portion in the magnetic block allows a further size reduction of the sensor chip.
    Type: Application
    Filed: May 14, 2018
    Publication date: January 7, 2021
    Inventor: Kei TANABE
  • Patent number: 10859642
    Abstract: An object of the present invention is to provide a magnetic sensor having enhanced magnetic detection sensitivity by bending magnetic flux more largely. A magnetic sensor includes magnetic detection elements MR1 and MR2 positioned on a plane P separating a first space S1 and a second space S2, a first magnetic member 31 disposed in the first space S1 so as to be between the magnetic detection elements MR1 and MR2 when viewed in the z-direction, and a second magnetic member 32 disposed in the second space S2. The magnetic detection element MR1 is positioned between the first magnetic member 31 and a first part 32a of the second magnetic member 32 when viewed in the z-direction. The magnetic detection element MR2 is positioned between the first magnetic member 31 and a second part 32b of the second magnetic member 32 when viewed in the z-direction.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: December 8, 2020
    Assignee: TDK CORPORATION
    Inventor: Kei Tanabe
  • Publication number: 20200355758
    Abstract: A magnetic sensor suppressing bias magnetic field effects includes a magnetic detecting unit including first to fourth magneto-resistive elements to which a first magnetic field to be detected is applied, a differential amplifier into which the output voltage of the magnetic detecting unit is input, a first magnetic field generating conductor which, by a first feedback current output by the differential amplifier, applies to the magnetic detecting unit a second magnetic field to cancel the first magnetic field detected by the magnetic detecting unit, a bias magnetic field detector which detects a bias magnetic field applied to the magnetic detecting unit and outputs a second feedback current corresponding to the bias magnetic field, and a second magnetic field generating conductor which, by the second negative feedback current, applies to the magnetic detecting unit a correcting magnetic field to cancel the bias magnetic field detected by the magnetic detecting unit.
    Type: Application
    Filed: April 6, 2018
    Publication date: November 12, 2020
    Inventors: Kei TANABE, Akihiro UNNO