Patents by Inventor Keiichi Fuse

Keiichi Fuse has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11896966
    Abstract: In one embodiment, an antibacterial material includes at least one microparticles selected from tungsten oxide microparticles and tungsten oxide complex microparticles. The microparticles, which have undergone a test to evaluate viable cell count by inoculating in a test piece, to which the microparticles are adhered in a range of 0.02 mg/cm2 or more and 40 mg/cm2 or less, at least one bacterium selected from among Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and enterohemorrhagic Escherichia coli, and storing for 24 hours, have an antibacterial activity value R of 0.1 or more expressed by the following: R=log(B1/C1) where, B1 denotes an average value (number) of viable cell count after storing an untreated test piece for 24 hours, and C1 denotes an average value (number) of viable cell count after storing the test piece on which the microparticles are coated for 24 hours.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: February 13, 2024
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Kayo Nakano, Akira Sato, Yasuhiro Shirakawa, Keiichi Fuse, Shinya Kasamatsu, Akito Sasaki
  • Patent number: 11692117
    Abstract: A rare earth regenerator material particle and a regenerator material particle group having a high long-term reliability, and a superconducting magnet, an examination apparatus, a cryopump and the like using the same are provided. A rare earth regenerator material particle contains a rare earth element as a constituent component, and in the particle, a peak indicating a carbon component is detected in a surface region by an X-ray photoelectron spectroscopy analysis.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: July 4, 2023
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Patent number: 11649171
    Abstract: A refrigerator is provided, including rare earth cold accumulating material particles filled in a cold accumulating vessel. The rare earth cold accumulating material particles are a rare earth oxide or a rare earth oxysulfide. The rare earth cold accumulating material particles define a sintered body. An average crystal grain size of the sintered body is 0.5 to 5 ?m, a porosity of the sintered body is 10 to 50 vol. %, and an average pore size of the sintered body is 0.3 to 3 ?m. In an arbitrary cross-section of the rare earth cold accumulating material particles, a number of pores per a unit area of 10 ?m×10 ?m is 20 to 70.
    Type: Grant
    Filed: May 26, 2021
    Date of Patent: May 16, 2023
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Patent number: 11530846
    Abstract: A reduction in a permeability of refrigerant gas is suppressed while increasing a filling factor of regenerator material particles with respect to a stage of a cold head. A cold head includes a stage including regenerator material particle groups, and a metal mesh material partitioning the regenerator material particle groups. The metal mesh material has quadrangular mesh holes each having a length of a long side of 1/10 or more and ½ or less of each of average particle sizes of the regenerator material particle groups.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: December 20, 2022
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Patent number: 11136244
    Abstract: The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 ?m; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 ?m. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 ?m or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: October 5, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Publication number: 20210284548
    Abstract: The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 ?m; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 ?m. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 ?m or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
    Type: Application
    Filed: May 26, 2021
    Publication date: September 16, 2021
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko YAMADA, Keiichi FUSE
  • Publication number: 20210246351
    Abstract: A rare earth regenerator material particle and a regenerator material particle group having a high long-term reliability, and a superconducting magnet, an examination apparatus, a cryopump and the like using the same are provided. A rare earth regenerator material particle contains a rare earth element as a constituent component, and in the particle, a peak indicating a carbon component is detected in a surface region by an X-ray photoelectron spectroscopy analysis.
    Type: Application
    Filed: April 26, 2021
    Publication date: August 12, 2021
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko YAMADA, Keiichi FUSE
  • Patent number: 11059725
    Abstract: The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 ?m; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 ?m. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 m or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: July 13, 2021
    Assignees: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Patent number: 11015101
    Abstract: A rare earth regenerator material particle and a regenerator material particle group having a high long-term reliability, and a superconducting magnet, an examination apparatus, a cryopump and the like using the same are provided. A rare earth regenerator material particle contains a rare earth element as a constituent component, and in the particle, a peak indicating a carbon component is detected in a surface region by an X-ray photoelectron spectroscopy analysis.
    Type: Grant
    Filed: August 20, 2019
    Date of Patent: May 25, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Patent number: 10907081
    Abstract: Provided is a group of rare-earth regenerator material particles having an average particle size of 0.01 to 3 mm, wherein the proportion of particles having a ratio of a long diameter to a short diameter of 2 or less is 90% or more by number, and the proportion of particles having a depressed portion having a length of 1/10 to ½ of a circumferential length on a particle surface is 30% or more by number. By forming the depressed portion on the surface of the regenerator material particles, it is possible to increase permeability of an operating medium gas and a contact surface area with the operating medium gas.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: February 2, 2021
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Publication number: 20200348052
    Abstract: A reduction in a permeability of refrigerant gas is suppressed while increasing a filling factor of regenerator material particles with respect to a stage of a cold head. A cold head includes a stage including regenerator material particle groups, and a metal mesh material partitioning the regenerator material particle groups. The metal mesh material has quadrangular mesh holes each having a length of a long side of 1/10 or more and ½ or less of each of average particle sizes of the regenerator material particle groups.
    Type: Application
    Filed: July 14, 2020
    Publication date: November 5, 2020
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS. CO., LTD.
    Inventors: Katsuhiko YAMADA, Keiichi FUSE
  • Publication number: 20200338543
    Abstract: In one embodiment, an antibacterial material includes at least one microparticles selected from tungsten oxide microparticles and tungsten oxide complex microparticles. The microparticles, which have undergone a test to evaluate viable cell count by inoculating in a test piece, to which the microparticles are adhered in a range of 0.02 mg/cm? or more and 40 mg/cm? or less, at least one bacterium selected from among Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, methicillin-resistant Staphylococcus aureus, and enterohemorrhagic Escherichia coli, and storing for 24 hours, have an antibacterial activity value R of 0.1 or more expressed by the following: R=log(B1/C1) where, B1 denotes an average value (number) of viable cell count after storing an untreated test piece for 24 hours, and C1 denotes an average value (number) of viable cell count after storing the test piece on which the microparticles are coated for 24 hours.
    Type: Application
    Filed: May 12, 2020
    Publication date: October 29, 2020
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Kayo NAKANO, Akira SATO, Yasuhiro SHIRAKAWA, Keiichi FUSE, Shinya KASAMATSU, Akito SASAKI
  • Patent number: 10753652
    Abstract: A reduction in a permeability of refrigerant gas is suppressed while increasing a filling factor of regenerator material particles with respect to a stage of a cold head. A cold head includes a stage including regenerator material particle groups, and a metal mesh material partitioning the regenerator material particle groups. The metal mesh material has quadrangular mesh holes each having a length of a long side of 1/10 or more and ½ or less of each of average particle sizes of the regenerator material particle groups.
    Type: Grant
    Filed: April 16, 2015
    Date of Patent: August 25, 2020
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Patent number: 10513646
    Abstract: A rare earth regenerator material particle and a regenerator material particle group having a high long-term reliability, and a superconducting magnet, an examination apparatus, a cryopump and the like using the same are provided. A rare earth regenerator material particle contains a rare earth element as a constituent component, and in the particle, a peak indicating a carbon component is detected in a surface region by an X-ray photoelectron spectroscopy analysis.
    Type: Grant
    Filed: July 11, 2018
    Date of Patent: December 24, 2019
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Publication number: 20190375972
    Abstract: A rare earth regenerator material particle and a regenerator material particle group having a high long-term reliability, and a superconducting magnet, an examination apparatus, a cryopump and the like using the same are provided. A rare earth regenerator material particle contains a rare earth element as a constituent component, and in the particle, a peak indicating a carbon component is detected in a surface region by an X-ray photoelectron spectroscopy analysis.
    Type: Application
    Filed: August 20, 2019
    Publication date: December 12, 2019
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko YAMADA, Keiichi FUSE
  • Patent number: 10480052
    Abstract: A permanent magnet of the embodiment includes: a composition represented by a composition formula: R(FepMqCurCtCo1-p-q-r-t)z (R is at least one element selected from rare-earth elements, M is at least one element selected from Ti, Zr and Hf, 0.27?p?0.45, 0.01?q?0.05, 0.01?r?0.1, 0.002?t?0.03, and 6?z?9); and a metallic structure including a main phase containing a Th2Zn17 crystal phase, and a sub phase of the element M having an element M concentration of 30 atomic % or more. The sub phase of the element M precipitates in the metallic structure. A ratio of a circumferential length to a precipitated area of the sub phase of the element M is 1 or more and 10 or less.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: November 19, 2019
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Masaya Hagiwara, Shinya Sakurada, Yosuke Horiuchi, Tadahiko Kobayashi, Tsuyoshi Kobayashi, Masaki Endo, Naoyuki Sanada, Masami Okamura, Takao Sawa, Keiichi Fuse, Satoru Habu
  • Publication number: 20190309203
    Abstract: Provided is a group of rare-earth regenerator material particles having an average particle size of 0.01 to 3 mm, wherein the proportion of particles having a ratio of a long diameter to a short diameter of 2 or less is 90% or more by number, and the proportion of particles having a depressed portion having a length of 1/10 to ½ of a circumferential length on a particle surface is 30% or more by number. By forming the depressed portion on the surface of the regenerator material particles, it is possible to increase permeability of an operating medium gas and a contact surface area with the operating medium gas.
    Type: Application
    Filed: June 25, 2019
    Publication date: October 10, 2019
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko YAMADA, Keiichi Fuse
  • Patent number: 10385248
    Abstract: Provided is a group of rare-earth regenerator material particles having an average particle size of 0.01 to 3 mm, wherein the proportion of particles having a ratio of a long diameter to a short diameter of 2 or less is 90% or more by number, and the proportion of particles having a depressed portion having a length of 1/10 to ½ of a circumferential length on a particle surface is 30% or more by number. By forming the depressed portion on the surface of the regenerator material particles, it is possible to increase permeability of an operating medium gas and a contact surface area with the operating medium gas.
    Type: Grant
    Filed: July 5, 2018
    Date of Patent: August 20, 2019
    Assignees: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko Yamada, Keiichi Fuse
  • Publication number: 20190071317
    Abstract: The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 ?m; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 ?m. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 ?m or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Applicants: KABUSHIKI KAISHA TOSHIBA, TOSHIBA MATERIALS CO., LTD.
    Inventors: Katsuhiko YAMADA, Keiichi FUSE
  • Publication number: 20190071316
    Abstract: The present invention provides a rare earth cold accumulating material particle comprising a rare earth oxide or a rare earth oxysulfide, wherein the rare earth cold accumulating material particle is composed of a sintered body; an average crystal grain size of the sintered body is 0.5 to 5 ?m; a porosity of the sintered body is 10 to 50 vol. %; and an average pore size of the sintered body is 0.3 to 3 ?m. Further, it is preferable that the porosity of the rare earth cold accumulating material particle is 20 to 45 vol. %, and a maximum pore size of the rare earth cold accumulating material particle is 4 m or less. Due to this structure, there can be provided a rare earth cold accumulating material having a high refrigerating capacity and a high strength.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Applicants: Kabushiki Kaisha Toshiba, Toshiba Materials Co., Ltd.
    Inventors: Katsuhiko Yamada, Keiichi Fuse