Patents by Inventor Keiichi Takahashi

Keiichi Takahashi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10910675
    Abstract: A nonaqueous electrolyte secondary battery according to the present invention includes: an electrode body including a positive electrode including a positive-electrode active material layer; an external terminal connected to the electrode body; a nonaqueous electrolyte including a gas generant, and a current interrupt device. A content of the gas generant is at least 4 mass %. The positive-electrode active material layer includes, as a positive-electrode active material, a complex oxide containing at least zirconium (Zr) and calcium (Ca) as constituent elements. When a sum total of metal elements, except metal that becomes a charge carrier, in the complex oxide is 100 mol % in terms of a mole percentage, the complex oxide contains Zr from 0.1 mol % to 0.5 mol % inclusive and Ca from 0.1 mol % to 0.3 mol % inclusive.
    Type: Grant
    Filed: March 5, 2015
    Date of Patent: February 2, 2021
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Saka, Keiichi Takahashi, Hideaki Fujita
  • Patent number: 10749167
    Abstract: A lithium ion secondary battery includes at least a positive electrode, a negative electrode, and an electrolyte. The positive electrode contains at least a first positive electrode active material and a second positive electrode active material. The first positive electrode active material is expressed with a formula (I) LiNiaCobMncO2 and the second positive electrode active material is expressed with a formula (II) LiNidCoeMnfO2, where a, b, c, d, e, and f satisfy conditions of a>d, 0.4?a?0.6, 0.2?b?0.5, 0.1?c?0.2, a+b+c=1.0, 0.2?d?0.5, 0.1?e?0.2, 0.4?f?0.6, and d+e+f=1.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: August 18, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryo Hanazaki, Keiichi Takahashi, Naoyuki Wada, Yukihiro Okada
  • Patent number: 10720673
    Abstract: A non-aqueous electrolyte secondary battery includes at least an electrode composite material layer, an intermediate layer, and an electrode current collector. The intermediate layer is arranged between the electrode composite material layer and the electrode current collector. The intermediate layer contains at least a foaming filler, a resin, and a conductive material. A value calculated by dividing an amount (mass %) of the foaming filler by an amount (mass %) of the resin is not smaller than 1.1 and not greater than 2.8 and a value calculated by dividing an amount (mass %) of the foaming filler by an amount (mass %) of the conductive material is not smaller than 8 and not greater than 14. The intermediate layer has a thickness not smaller than 2 ?m and not greater than 7 ?m.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: July 21, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koji Torita, Keiichi Takahashi, Yusuke Fukumoto
  • Patent number: 10651460
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a separator. The positive electrode includes a positive electrode current collector, a first positive electrode mixture layer that is provided on the positive electrode current collector, and a second positive electrode mixture layer that is provided on the first positive electrode mixture layer. The first positive electrode mixture layer includes a first positive electrode active material and a first conductive material. The second positive electrode mixture layer includes a second positive electrode active material and a second conductive material. The first positive electrode active material includes a lithium composite oxide having a layered crystal structure. The second positive electrode active material includes a lithium composite phosphate having an olivine-type crystal structure.
    Type: Grant
    Filed: September 8, 2015
    Date of Patent: May 12, 2020
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Keiichi Takahashi, Shuji Tsutsumi, Tatsuya Hashimoto
  • Publication number: 20200035587
    Abstract: A semiconductor device includes a semiconductor element, a packaging material that encapsulates the semiconductor element, and a metal member electrically connected to the semiconductor element and having a protruding portion protruding from an end face of the packaging material, in which the protruding portion has a lateral peripheral edge along the end face of the packaging material, a longitudinal peripheral edge along the normal direction of the end face, and a corner peripheral edge formed by side portions that are disposed at the corners of the protruding portion and continue to the lateral peripheral edge and the longitudinal peripheral edge, and in which the corner peripheral edge includes a first side portion intersecting substantially orthogonally with the lateral peripheral edge and extending toward the end face of the packaging material and a second side portion with one end thereof intersecting substantially orthogonally with the first side portion and the other end intersecting substantially ort
    Type: Application
    Filed: March 5, 2018
    Publication date: January 30, 2020
    Inventors: Koshun SAITO, Keiichi TAKAHASHI
  • Patent number: 10511024
    Abstract: An electrode for a nonaqueous electrolyte secondary battery includes an electrode mixture layer. The electrode mixture layer contains a hollow active material particle and a needle-shaped filler having a through-hole that extends through the needle-shaped filler in a longitudinal direction. The needle-shaped filler is arranged on surfaces of the hollow active material particle.
    Type: Grant
    Filed: January 7, 2016
    Date of Patent: December 17, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroya Umeyama, Tatsuya Hashimoto, Naoyuki Wada, Keiichi Takahashi, Koichi Toriyama
  • Patent number: 10490859
    Abstract: A positive electrode of a lithium-ion secondary battery contains first positive electrode active material particles and second positive electrode active material particles. The first positive electrode active material particles have a first composition represented by a compositional formula LiNix1Coy1Mnz1O2 (here, x1, y1, and z1 are numerical values satisfying 0<x1<1, 0<y1<1, 0.3<z1<0.5, and x1+y1+z1=1). The second positive electrode active material particles have a second composition represented by a compositional formula LiNix2Coy2Mnz2O2 (here, x2, y2, and z2 are numerical values satisfying 0<x2<1, 0<y2<1, 0<z2<0.2, and x2+y2+z2=1). The surface of at least one of the first positive electrode active material particles and the second positive electrode active material particles is coated with a transition metal oxide.
    Type: Grant
    Filed: December 11, 2017
    Date of Patent: November 26, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Tsubouchi, Keiichi Takahashi, Naoyuki Wada, Yukihiro Okada
  • Patent number: 10374224
    Abstract: A method of manufacturing a non-aqueous electrolyte solution secondary battery includes: (A) preparing a first composite material by mixing a first positive electrode active material, a first conductive material and a first binder; (B) preparing a second composite material by mixing a second positive electrode active material, a second conductive material and a second binder; and (C) manufacturing a positive electrode by forming a positive electrode composite layer including the first composite material and the second composite material. The first positive electrode active material has an average discharge potential lower than that of the second positive electrode active material. The first conductive material has a first OAN. The second conductive material has a second OAN. A ratio of the second OAN to the first OAN is 1.3 or more and 2.1 or less. A sum of the first OAN and the second OAN is 31.64 ml/100 g or less.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 6, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Koji Torita, Tatsuya Hashimoto, Keiichi Takahashi, Akihiro Taniguchi, Shuji Tsutsumi, Yusuke Fukumoto, Yuji Yokoyama
  • Patent number: 10297814
    Abstract: A positive electrode includes first positive electrode active material particles and second positive electrode active material particles. The first positive electrode active material particles include 0.1% by mass or more and 1% by mass or less of lithium carbonate and a first lithium transition metal oxide as a remainder. The first lithium transition metal oxide is represented by LiM1(1-z1)Mnz1O2 (0.05?z1?0.20). The second positive electrode active material particles include 0.01% by mass or more and 0.05% by mass or less of lithium carbonate and a second lithium transition metal oxide as a remainder. The second lithium transition metal oxide is represented by LiM2(1-z2)Mnz2O2 (0.40?z2?0.60). An electrolytic solution includes 1% by mass or more and 5% by mass or less of an overcharging additive and a solvent and a lithium salt as a remainder.
    Type: Grant
    Filed: November 21, 2017
    Date of Patent: May 21, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi Tsubouchi, Motoshi Isono, Masaki Kato, Naoyuki Wada, Keiichi Takahashi, Yukihiro Okada, Tatsuya Hashimoto
  • Publication number: 20190123395
    Abstract: A non-aqueous electrolyte secondary battery includes at least an electrode composite material layer, an intermediate layer, and an electrode current collector. The intermediate layer is arranged between the electrode composite material layer and the electrode current collector. The intermediate layer contains at least a foaming filler, a resin, and a conductive material. A value calculated by dividing an amount (mass %) of the foaming filler by an amount (mass %) of the resin is not smaller than 1.1 and not greater than 2.8 and a value calculated by dividing an amount (mass %) of the foaming filler by an amount (mass %) of the conductive material is not smaller than 8 and not greater than 14. The intermediate layer has a thickness not smaller than 2 ?m and not greater than 7 ?m.
    Type: Application
    Filed: October 23, 2018
    Publication date: April 25, 2019
    Inventors: Koji Torita, Keiichi Takahashi, Yusuke Fukumoto
  • Patent number: 10263294
    Abstract: Provided is a lithium ion secondary battery which has a low internal resistance in a low-SOC region and a sufficiently large amount of gas generated during overcharge. The lithium ion secondary battery disclosed herein includes an electrode body having a positive electrode and a negative electrode, and a nonaqueous electrolytic solution. The lithium ion secondary battery further includes a pressure-type safety mechanism. The nonaqueous electrolytic solution includes a gas generating agent. The positive electrode has a positive electrode active material layer including a positive electrode active material. The positive electrode active material includes a lithium transition metal composite oxide represented by LiNiaCobMncO2 wherein a, b and c satisfy the following conditions: 0.35?a?0.45, 0.15?b?0.25, 0.35?c?0.45, and a+b+c=1, and a lithium transition metal composite oxide represented by LiNixCoyMnzO2 wherein x, y and z satisfy the following conditions: 0.35?x?0.45, 0.45?y?0.55, 0.05?z?0.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 16, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Saka, Yukihiro Okada, Keiichi Takahashi, Kaoru Inoue
  • Patent number: 10243196
    Abstract: A positive electrode mixture layer (12) includes a first layer (12a) that has a main surface MS and a second layer (12b) formed closer to the positive electrode current collector (11) side than the first layer (12a). A ratio of the volume of the first layer (12a) to the volume of the positive electrode mixture layer (12) is 20 to 75 vol %. The first layer (12a) contains lithium iron phosphate (LFP) (1) and lithium nickel cobalt manganese composite oxide (NCM) (2). A ratio of the mass of the LFP (1) to the total mass of the LFP (1) and the NCM (2) in the first layer (12a) is more than 0 and 80 mass % or less. The second layer (12b) contains NCM (2). A ratio of the mass of the LFP (1) to the total mass of the positive electrode active material in the positive electrode mixture layer (12) is 7.5 to 20 mass %. A maximum pore size of the first layer (12a) is 0.50 to 0.70 ?m.
    Type: Grant
    Filed: September 2, 2015
    Date of Patent: March 26, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Saka, Keiichi Takahashi, Hideaki Fujita, Tatsuya Hashimoto
  • Publication number: 20190036110
    Abstract: A lithium ion secondary battery includes at least a positive electrode, a negative electrode, and an electrolyte. The positive electrode contains at least a first positive electrode active material and a second positive electrode active material. The first positive electrode active material is expressed with a formula (I) LiNiaCobMncO2 and the second positive electrode active material is expressed with a formula (II) LiNidCoeMnfO2, where a, b, c, d, e, and f satisfy conditions of a>d, 0.4?a?0.6, 0.2?b?0.5, 0.1?c?0.2, a+b+c=1.0, 0.2?d?0.5, 0.1?e?0.2, 0.4?f?0.6, and d+e+f=1.
    Type: Application
    Filed: June 18, 2018
    Publication date: January 31, 2019
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Ryo HANAZAKI, Keiichi TAKAHASHI, Naoyuki WADA, Yukihiro OKADA
  • Patent number: 10153481
    Abstract: Provided is a non-aqueous electrolyte secondary battery which exhibits excellent energy density and excellent input/output density (and especially output density in low SOC regions). This invention discloses a non-aqueous electrolyte secondary battery that includes a positive electrode, a negative electrode and a non-aqueous electrolyte. The positive electrode includes a positive electrode current collector and a positive electrode active material layers formed on the positive electrode current collector. The positive electrode active material layer has two regions that are demarcated in a surface direction of the positive electrode current collector, which are a first region 14a containing mainly a positive active material of lithium iron phosphate, and a second region 14b containing mainly a positive active material of a lithium-transition metal composite oxide.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: December 11, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Saka, Hideaki Fujita, Keiichi Takahashi
  • Patent number: 10141610
    Abstract: Provided is a non-aqueous electrolyte secondary battery combining high battery performance in normal use and endurance against overcharge. The non-aqueous electrolyte secondary battery comprises a positive electrode, a negative electrode, and a non-aqueous electrolyte. The positive electrode comprises a positive electrode active material 16. Positive electrode active material 16 is formed of a particulate lithium composite oxide 16c comprising at least lithium, nickel, cobalt, manganese and tungsten; and a nickel oxide layer 16s formed on the lithium composite oxide surface. With the non-lithium metals in lithium composite oxide 16c being 100% by mole, tungsten accounts for 0.05% by mole or greater, but 2% by mole or less. With lithium composite oxide 16c being 100 parts by mass, the nickel oxide content is 0.01 part by mass or greater, but 2 parts by mass or less.
    Type: Grant
    Filed: December 4, 2015
    Date of Patent: November 27, 2018
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyuki Saka, Keiichi Takahashi
  • Patent number: 10088623
    Abstract: The present disclosure relates to a light emitting device that can improve design of emitted light. A communication substrate is provided with an LED indicator which emits light. A light guiding plate has a concave surface portion which is a concave surface to cover the LED indicator, and receives the light from the LED indicator using the concave surface portion. A storage case stores the communication substrate and the light guiding plate in a state where a part of the light guiding plate is exposed. The light guiding plate allows the light from the LED indicator to penetrate to a part of the light guiding plate exposed from the storage case by diffusing the light received using the concave surface portion. For example, the present disclosure is applicable to the light emitting device that emits light using an LED or the like.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: October 2, 2018
    Assignee: Saturn Licensing LLC
    Inventors: Soichiro Nakamura, Hiroyasu Sato, Masao Kondo, Hirotaka Tako, Keiichi Takahashi, Shin Yamamoto, Ken Yano, Takanobu Wada, Kazuya Tateishi
  • Publication number: 20180220109
    Abstract: This disclosure relates to a connection device that can provide a new function for an electronic device. A film antenna receives a wireless signal transmitted by radio, a relay unit relays the received wireless signal to a television receiver, an LED indicator emits light based on a control signal transmitted from the television receiver, a storage case stores the film antenna, the relay unit and a light emitting unit, and a connection member connects the storage case to the television receiver. In addition, in a state of being connected to the television receiver, in a normal direction to a housing surface having a display unit on a housing of the television receiver, the storage case has a protruding section which further protrudes from the housing surface and stores the film antenna in the protruding section. For example, this disclosure can be applied to a receiving device having a receiving unit which receives the wireless signal.
    Type: Application
    Filed: March 16, 2018
    Publication date: August 2, 2018
    Inventors: Soichiro Nakamura, Hiroyasu Sato, Shin Yamamoto, Hirotaka Tako, Keiichi Takahashi, Ken Yano, Shunsuke Kajiura
  • Publication number: 20180210133
    Abstract: The present disclosure relates to a light emitting device that can improve design of emitted light. A communication substrate is provided with an LED indicator which emits light. A light guiding plate has a concave surface portion which is a concave surface to cover the LED indicator, and receives the light from the LED indicator using the concave surface portion. A storage case stores the communication substrate and the light guiding plate in a state where a part of the light guiding plate is exposed. The light guiding plate allows the light from the LED indicator to penetrate to a part of the light guiding plate exposed from the storage case by diffusing the light received using the concave surface portion. For example, the present disclosure is applicable to the light emitting device that emits light using an LED or the like.
    Type: Application
    Filed: March 26, 2018
    Publication date: July 26, 2018
    Inventors: Soichiro Nakamura, Hiroyasu Sato, Masao Kondo, Hirotaka Tako, Keiichi Takahashi, Shin Yamamoto, Ken Yano, Takanobu Wada, Kazuya Tateishi
  • Publication number: 20180183111
    Abstract: A positive electrode of a lithium-ion secondary battery contains first positive electrode active material particles and second positive electrode active material particles. The first positive electrode active material particles have a first composition represented by a compositional formula LiNix1Coy1Mnz1O2 (here, x1, y1, and z1 are numerical values satisfying 0<x1<1, 0<y1<1, 0.3<z1<0.5, and x1+y1+z1=1). The second positive electrode active material particles have a second composition represented by a compositional formula LiNix2Coy2Mnz2O2 (here, x2, y2, and z2 are numerical values satisfying 0<x2<1, 0<y2<1, 0<z2<0.2, and x2+y2+z2=1). The surface of at least one of the first positive electrode active material particles and the second positive electrode active material particles is coated with a transition metal oxide.
    Type: Application
    Filed: December 11, 2017
    Publication date: June 28, 2018
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hiroshi TSUBOUCHI, Keiichi TAKAHASHI, Naoyuki WADA, Yukihiro OKADA
  • Patent number: D901405
    Type: Grant
    Filed: September 27, 2017
    Date of Patent: November 10, 2020
    Assignee: ROHM CO., LTD.
    Inventors: Koshun Saito, Keiichi Takahashi