Patents by Inventor Keiichiro Kai

Keiichiro Kai has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8372363
    Abstract: A method for removing mercury in a combustion exhaust gas includes injecting ammonia or urea as a reducing agent into a combustion exhaust gas containing nitrogen oxides, sulfur dioxide, metallic mercury, and hydrogen halides, and then introducing the combustion exhaust gas to a denitration apparatus filled with a denitration catalyst to cause a denitration reaction and oxidize the metallic mercury to produce mercury halide; and introducing the combustion exhaust gas through an air preheater and an electric dust collector to a wet desulfurization apparatus, thereby removing sulfur dioxides and the mercury halide, wherein the ammonia concentration of the combustion exhaust gas at an exit of the denitration apparatus is maintained at 5 ppm or higher, and the mercury halide is adsorbed or precipitated onto combustion ash and collected by the electric dust collector to discharge the mercury halide out of a system.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: February 12, 2013
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Seiji Ikemoto
  • Publication number: 20120270723
    Abstract: Provided is a method for cleaning a used denitration catalyst, which prevents release of mercury to the atmosphere by collecting and removing mercury which would have been released to the atmosphere in the process of cleaning the used denitration catalyst. The method comprises immersing the used denitration catalyst mainly composed of titanium oxide and having been used in exhaust gas containing mercury in a cleaning liquid, and stirring the cleaning liquid to dissolve and remove catalyst poisons including the mercury from the used denitration catalyst, wherein a waste gas generated in the step of stirring the cleaning liquid is conducted to a flue having a mercury removal device so as to remove the mercury, and then vented to the atmosphere.
    Type: Application
    Filed: December 17, 2010
    Publication date: October 25, 2012
    Inventors: Seiji Ikemoto, Yasuyoshi Kato, Keiichiro Kai
  • Publication number: 20110268638
    Abstract: A method for removing mercury in a combustion exhaust gas includes injecting ammonia or urea as a reducing agent into a combustion exhaust gas containing nitrogen oxides, sulfur dioxide, metallic mercury, and hydrogen halides, and then introducing the combustion exhaust gas to a denitration apparatus filled with a denitration catalyst to cause a denitration reaction and oxidize the metallic mercury to produce mercury halide; and introducing the combustion exhaust gas through an air preheater and an electric dust collector to a wet desulfurization apparatus, thereby removing sulfur dioxides and the mercury halide, wherein the ammonia concentration of the combustion exhaust gas at an exit of the denitration apparatus is maintained at 5 ppm or higher, and the mercury halide is adsorbed or precipitated onto combustion ash and collected by the electric dust collector to discharge the mercury halide out of a system.
    Type: Application
    Filed: December 13, 2010
    Publication date: November 3, 2011
    Applicant: BABCOCK-HITACH KABUSHIKI KAISHA
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Seiji Ikemoto
  • Publication number: 20110189069
    Abstract: The invention realizes a catalyst which is hardly deteriorated even when volatile catalyst-poisoning compounds such as P and As are accumulated and which can reduce the rate of oxidation of SO2 to a level as low as a fraction of that of the catalyst in the prior art, and provides an exhaust gas purification catalyst which can maintain a high activity and a low rate of oxidation of SO2 for a long time even with any diversified coal, a method of producing the same, and an exhaust gas purification method using the same. Disclosed is an exhaust gas purification catalyst having a composition comprising oxides of titanium (Ti), molybdenum (Mo) and/or tungsten (W), vanadium (V) and bismuth (Bi), wherein the atomic ratio of Ti:(Mo and/or W):V is 75 to 98.9:1 to 0.1 to 10 and the atomic ratio of Bi/(Mo and/or W) is 0.1 to 0.8.
    Type: Application
    Filed: April 14, 2011
    Publication date: August 4, 2011
    Inventors: Yasuyoshi KATO, Keiichiro KAI, Naomi IMADA
  • Publication number: 20110116999
    Abstract: An exhaust gas purification catalyst is provided which contains titanium oxide as a main component and an oxide of one element or two or more elements selected from the group consisting of tungsten (W), molybdenum (Mo), and vanadium (V) as an active component, wherein the exhaust gas purification catalyst contains phosphoric acid or a water soluble phosphoric acid compound so that the atomic ratio of phosphorus (P) to a catalytically active component represented by the following formula is more than 0 and 1.0 or less; P/catalytically active component (atomic ratio)=number of moles of P/(number of moles of W+number of moles of Mo+number of moles of V).
    Type: Application
    Filed: March 25, 2009
    Publication date: May 19, 2011
    Inventors: Yasuyoshi Kato, Naomi Imada, Keiichiro Kai
  • Patent number: 7842644
    Abstract: A catalyst is provided having higher mercury oxidation performance than a conventional catalyst without increasing catalyst quantity or enhancing SO2 oxidation performance and constitutes an oxidation catalyst for metal mercury, which contains a molybdenum and vanadium complex oxide, for example, MoV2O8, as a main component having a catalytic activity and is formed by placing the molybdenum and vanadium complex oxide in layers only on the surface of a plate-like or honeycomb-like porous carrier. The porous carrier contains Ti and W and has a function of an NOx removal catalyst as a whole.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: November 30, 2010
    Assignee: Babcock-Hitachi Kabushiki Kaisha
    Inventors: Keiichiro Kai, Yasuyoshi Kato
  • Publication number: 20100183492
    Abstract: To overcome the problem of a conventional catalyst and to provide an exhaust gas purifying catalyst that meets the requirement concerning Hg oxidation activity and SO2 oxidation activity; i.e., an exhaust gas purifying catalyst which specifically reduces percent SO2 oxidation, while maintaining percent Hg oxidation at a high level. The invention provides an exhaust gas purifying catalyst which comprises a composition containing oxides of (i) titanium (Ti), (ii) molybdenum (Mo) and/or tungsten (W), (iii) vanadium (V), and (iv) phosphorus (P), wherein the catalyst contains Ti, Mo and/or W, and V in atomic proportions of 85 to 97.5:2 to 10:0.5 to 10, and has an atomic ratio of P/(sum of V and Mo and/or W) of 0.5 to 1.
    Type: Application
    Filed: September 7, 2007
    Publication date: July 22, 2010
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada
  • Publication number: 20090311155
    Abstract: A catalyst is provided having higher mercury oxidation performance than a conventional catalyst without increasing catalyst quantity or enhancing SO2 oxidation performance and constitutes an oxidation catalyst for metal mercury, which contains a molybdenum and vanadium complex oxide, for example, MoV2O8, as a main component having a catalytic activity and is formed by placing the molybdenum and vanadium complex oxide in layers only on the surface of a plate-like or honeycomb-like porous carrier. The porous carrier contains Ti and W and has a function of an NOx removal catalyst as a whole.
    Type: Application
    Filed: September 21, 2007
    Publication date: December 17, 2009
    Applicant: BABCOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Keiichiro Kai, Yasuyoshi Kato
  • Publication number: 20090246111
    Abstract: The invention realizes a catalyst which is hardly deteriorated even when volatile catalyst-poisoning compounds such as P and As are accumulated and which can reduce the rate of oxidation of SO2 to a level as low as a fraction of that of the catalyst in the prior art, and provides an exhaust gas purification catalyst which can maintain a high activity and a low rate of oxidation of SO2 for a long time even with any diversified coal, a method of producing the same, and an exhaust gas purification method using the same. Disclosed is an exhaust gas purification catalyst having a composition comprising oxides of titanium (Ti), molybdenum (Mo) and/or tungsten (W), vanadium (V) and bismuth (Bi), wherein the atomic ratio of Ti:(Mo and/or W):V is 75 to 98.9:1 to 0.1 to 10 and the atomic ratio of Bi/(Mo and/or W) is 0.1 to 0.8.
    Type: Application
    Filed: January 30, 2008
    Publication date: October 1, 2009
    Applicant: BABACOCK-HITACHI KABUSHIKI KAISHA
    Inventors: Yasuyoshi Kato, Keiichiro Kai, Naomi Imada
  • Publication number: 20090053121
    Abstract: A catalyst mainly containing silicon oxide and vanadium oxide and having an Si/V atomic ratio within the range from 99.5/0.5 to 85/15 is obtained by gelatinizing a liquid mixture of a colloidal silica and a vanadium compound in advance, then mixing the thus-obtained slurry by heating, and finally drying and/or firing the resulting mixture. As a catalyst for oxidizing mercury metal, this catalyst is brought into contact with an exhaust gas containing mercury metal, thereby oxidizing mercury metal.
    Type: Application
    Filed: February 9, 2007
    Publication date: February 26, 2009
    Inventors: Keiichiro Kai, Yasuyoshi Kato, Naomi Imada