Patents by Inventor Keiji Nishida

Keiji Nishida has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240117384
    Abstract: Provided is a method for altering a targeted site of a DNA in a cell, including a step of stimulating the cell with a factor inducing a DNA modifying enzyme endogenous to the cell, and bringing a complex of a nucleic acid sequence-recognizing module specifically binding to a target nucleotide sequence in a given DNA and a DNA modifying enzyme-binding module bonded to each other into contact with the DNA to convert one or more nucleotides in the targeted site to other one or more nucleotides or delete one or more nucleotides, or insert one or more nucleotides into the targeted site.
    Type: Application
    Filed: December 14, 2023
    Publication date: April 11, 2024
    Applicant: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Keiji NISHIDA, Akihiko KONDO, Takayuki ARAZOE, Shin YOSHIOKA
  • Publication number: 20240093240
    Abstract: The invention provides a site-specific modification method of a DNA molecule that enables gene function manipulation. In particular, the invention provides a method for manipulating gene function by a site-specific action on a target DNA molecule, said method comprising a step for preparing a complex containing an Argonaute protein, a guide RNA and an additional sequence and a step for contacting the target DNA molecule with the complex, wherein the guide RNA is designed to guide the complex to a region containing the desired site in the target DNA molecule.
    Type: Application
    Filed: December 28, 2021
    Publication date: March 21, 2024
    Applicant: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Keiji NISHIDA, Hitoshi MITSUNOBU
  • Publication number: 20240006443
    Abstract: The present disclosure relates to a solid-state imaging device, an imaging device, and an electronic apparatus that are capable of suppressing generation of flare and also suppressing coloring caused by the flare with a simple configuration. A high refractive index layer is formed between a solid-state imaging element and a transparent protective substrate (glass substrate). When reflected light caused by diffracted light generated from an on-chip lens is reflected at an interface with the high refractive index layer, the reflected light is entirely reflected at a surface layer that is a transparent protective substrate and then the reflected light is sufficiently attenuated before being incident again. Consequently, flare and coloring caused by the flare are suppressed. The present disclosure is adaptable to an imaging device.
    Type: Application
    Filed: July 7, 2023
    Publication date: January 4, 2024
    Inventor: KEIJI NISHIDA
  • Patent number: 11845953
    Abstract: Provided is a method for altering a targeted site of a DNA in a cell, including a step of stimulating the cell with a factor inducing a DNA modifying enzyme endogenous to the cell, and bringing a complex of a nucleic acid sequence-recognizing module specifically binding to a target nucleotide sequence in a given DNA and a DNA modifying enzyme-binding module bonded to each other into contact with the DNA to convert one or more nucleotides in the targeted site to other one or more nucleotides or delete one or more nucleotides, or insert one or more nucleotides into the targeted site.
    Type: Grant
    Filed: March 20, 2018
    Date of Patent: December 19, 2023
    Assignee: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Keiji Nishida, Akihiko Kondo, Takayuki Arazoe, Shin Yoshioka
  • Publication number: 20230323335
    Abstract: The invention provides a miniaturized cytidine deaminase-containing complex for modifying DNA formed by combining a nucleic acid sequence recognition module and cytidine deaminase, wherein the nucleic acid sequence recognition module specifically binds to a target nucleotide sequence of double-stranded DNA, the cytidine deaminase is composed of an amino acid sequence composed of a region of amino acid residues at positions 30-150 of SEQ ID NO: 1, an ortholog thereof, an amino acid sequence having mutations of one or several amino acids therein, or an amino acid sequence having at least 90% similarity thereto, and the targeted site of the double-stranded DNA is modified.
    Type: Application
    Filed: September 6, 2021
    Publication date: October 12, 2023
    Applicant: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Keiji NISHIDA, Ang LI, Hitoshi MITSUNOBU
  • Patent number: 11728363
    Abstract: The present disclosure relates to a solid-state imaging device, an imaging device, and an electronic apparatus that are capable of suppressing generation of flare and also suppressing coloring caused by the flare with a simple configuration. A high refractive index layer is formed between a solid-state imaging element and a transparent protective substrate (glass substrate). When reflected light caused by diffracted light generated from an on-chip lens is reflected at an interface with the high refractive index layer, the reflected light is entirely reflected at a surface layer that is a transparent protective substrate and then the reflected light is sufficiently attenuated before being incident again. Consequently, flare and coloring caused by the flare are suppressed. The present disclosure is adaptable to an imaging device.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: August 15, 2023
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Keiji Nishida
  • Patent number: 11718846
    Abstract: The invention provides a method of modifying a targeted site of a double stranded DNA, including a step of contacting a complex wherein a nucleic acid sequence-recognizing module that specifically binds to a target nucleotide sequence in a selected double stranded DNA and a nucleic acid base converting enzyme are linked, with the double stranded DNA, to convert one or more nucleotides in the targeted site to other one or more nucleotides or delete one or more nucleotides, or insert one or more nucleotides into the targeted site, without cleaving at least one strand of the double stranded DNA in the targeted site.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: August 8, 2023
    Assignee: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Keiji Nishida, Akihiko Kondo, Satomi Kojima
  • Publication number: 20230151376
    Abstract: The present invention provides an organelle transformant screening method. More specifically, the present invention provides an organelle transformant screening method utilizing inhibition of a lipid synthetic pathway.
    Type: Application
    Filed: March 24, 2021
    Publication date: May 18, 2023
    Applicant: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Kenta KATAYAMA, Jun TERAMOTO, Keiji NISHIDA
  • Publication number: 20230143387
    Abstract: An imaging device includes a plurality of imaging elements, wherein each of the plurality of imaging elements includes: a plurality of pixels containing impurities of a first conductivity type; an element separation wall surrounding the plurality of pixels and provided so as to penetrate a semiconductor substrate; an on-chip lens provided above a light receiving surface of the semiconductor substrate so as to be shared by the plurality of pixels; and a first separation portion provided in a region surrounded by the element separation wall and separating the plurality of pixels, the first separation portion is provided so as to extend in a thickness direction of the semiconductor substrate, and a first diffusion region containing impurities of a second conductivity type opposite to the first conductivity type is provided in a region positioned around the first separation portion and extending in the thickness direction of the semiconductor substrate.
    Type: Application
    Filed: March 26, 2021
    Publication date: May 11, 2023
    Applicant: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventors: Akira MATSUMOTO, Koichiro ZAITSU, Keiji NISHIDA, Mizuki NISHIDA, Kazutaka IZUKASHI, Daisuke ITO, Yasufumi MIYOSHI, Junpei YAMAMOTO, Yusuke TANAKA, Yasushi HAMAMOTO
  • Publication number: 20230008784
    Abstract: Provided is a solid-state imaging device capable of suppressing color mixing between different colors while reducing the sensitivity difference between same colors. The solid-state imaging device includes: a plurality of photoelectric conversion units formed on a substrate to generate signal charges according to an amount of incident light; a microlens array including a microlens formed for a photoelectric conversion unit group including at least two or more adjacent photoelectric conversion units 21 to guide incident light to the photoelectric conversion unit group; a scatterer disposed on an optical path of the incident light collected by the microlens; and an inter-pixel light shielding portion including a groove formed between the photoelectric conversion unit of the photoelectric conversion unit group and the photoelectric conversion unit adjacent to the photoelectric conversion unit group and an insulating material filled in the groove.
    Type: Application
    Filed: October 30, 2020
    Publication date: January 12, 2023
    Inventor: KEIJI NISHIDA
  • Publication number: 20220259610
    Abstract: The present invention provides a method for selecting a promoter that functions in an organelle, the method comprising: (1) the step of preparing sequence information obtained by RNA sequencing analysis; (2) the step of mapping the sequence information prepared in the step (1) onto a sequence of organellar DNA; (3) the step of calculating the amount of change in RNA expression in each region based on the mapping information obtained in the step (2); (4) the step of selecting regions in which the amount of change obtained in the step (3) is within a range of preset reference values; and (5) the step of identifying a region, among the regions selected, as a promoter functioning in an organelle.
    Type: Application
    Filed: March 6, 2020
    Publication date: August 18, 2022
    Applicant: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Kenta KATAYAMA, Keiji NISHIDA
  • Patent number: 11220693
    Abstract: The present invention provides a method of modifying a targeted site of a double stranded DNA of a monocot cell, comprising a step of contacting a complex wherein a nucleic acid sequence-recognizing module that specifically binds to a target nucleotide sequence in the given double stranded DNA and a nucleic acid base converting enzyme are bonded, with said double stranded DNA, to convert one or more nucleotides in the targeted site to other one or more nucleotides or delete one or more nucleotides, or insert one or more nucleotides into said targeted site, without cleaving at least one strand of said double stranded DNA in the targeted site, wherein the double stranded DNA is contacted with the complex by introducing a nucleic acid encoding the complex into the monocot cell.
    Type: Grant
    Filed: November 25, 2016
    Date of Patent: January 11, 2022
    Assignee: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Keiji Nishida, Zenpei Shimatani, Akihiko Kondo
  • Publication number: 20210305302
    Abstract: The present disclosure relates to a solid-state imaging device, an imaging device, and an electronic apparatus that are capable of suppressing generation of flare and also suppressing coloring caused by the flare with a simple configuration. A high refractive index layer is formed between a solid-state imaging element and a transparent protective substrate (glass substrate). When reflected light caused by diffracted light generated from an on-chip lens is reflected at an interface with the high refractive index layer, the reflected light is entirely reflected at a surface layer that is a transparent protective substrate and then the reflected light is sufficiently attenuated before being incident again. Consequently, flare and coloring caused by the flare are suppressed. The present disclosure is adaptable to an imaging device.
    Type: Application
    Filed: August 8, 2019
    Publication date: September 30, 2021
    Inventor: KEIJI NISHIDA
  • Patent number: 11041169
    Abstract: The present invention provides a method for modifying a targeted site of a double-stranded DNA in a cell, the method including a step of bringing a complex in which a nucleic acid sequence-recognizing module that specifically binds to a selected target nucleotide sequence in a double-stranded DNA and a nucleic acid base converting enzyme or DNA glycosylase are linked, and a donor DNA containing an insertion sequence into contact with said double-stranded DNA, to substitute the targeted site with the insertion sequence, or insert the insertion sequence into said targeted site, without cleaving at least one strand of said double-stranded DNA in the targeted site.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: June 22, 2021
    Assignee: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventor: Keiji Nishida
  • Publication number: 20210171935
    Abstract: The present invention provides a method of modifying a targeted site of a double stranded DNA, including a step of contacting a complex wherein a nucleic acid sequence-recognizing module that specifically binds to a target nucleotide sequence in a selected double stranded DNA and DNA glycosylase with sufficiently low reactivity with a DNA having an unrelaxed double helix structure (unrelaxed DNA) are bonded, with the double stranded DNA, to convert one or more nucleotides in the targeted site to other one or more nucleotides or delete one or more nucleotides, or insert one or more nucleotides into the targeted site, without cleaving at least one strand of the double stranded DNA in the targeted site.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 10, 2021
    Applicant: National University Corporation Kobe University
    Inventors: Keiji NISHIDA, Akihiko KONDO
  • Patent number: 11001856
    Abstract: The present invention provides a method for modifying a targeted site of a double-stranded DNA in a cell, the method including a step of bringing a complex in which a nucleic acid sequence-recognizing module that specifically binds to a selected target nucleotide sequence in a double-stranded DNA and a nucleic acid base converting enzyme or DNA glycosylase are linked, and a donor DNA containing an insertion sequence into contact with said double-stranded DNA, to substitute the targeted site with the insertion sequence, or insert the insertion sequence into said targeted site, without cleaving at least one strand of said double-stranded DNA in the targeted site.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: May 11, 2021
    Assignee: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventor: Keiji Nishida
  • Patent number: 10920215
    Abstract: The present invention provides a method of modifying a targeted site of a double stranded DNA, including a step of contacting a complex wherein a nucleic acid sequence-recognizing module that specifically binds to a target nucleotide sequence in a selected double stranded DNA and DNA glycosylase with sufficiently low reactivity with a DNA having an unrelaxed double helix structure (unrelaxed DNA) are bonded, with the double stranded DNA, to convert one or more nucleotides in the targeted site to other one or more nucleotides or delete one or more nucleotides, or insert one or more nucleotides into the targeted site, without cleaving at least one strand of the double stranded DNA in the targeted site.
    Type: Grant
    Filed: November 2, 2015
    Date of Patent: February 16, 2021
    Assignee: National University Corporation Kobe University
    Inventors: Keiji Nishida, Akihiko Kondo
  • Publication number: 20210024906
    Abstract: The present invention provides a complex containing a nucleic acid sequence-recognizing module and a proteolysis tag, wherein the module is linked to the proteolysis tag, the module specifically binds to a target nucleotide sequence in a double stranded DNA, and the tag consists of (i) a peptide containing 3 hydrophobic amino acid residues at the C-terminal, or (ii) a peptide containing 3 amino acid residues at the C-terminal m wherein at least a part of the amino acid residues is substituted by serine.
    Type: Application
    Filed: November 21, 2018
    Publication date: January 28, 2021
    Applicant: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventor: Keiji NISHIDA
  • Publication number: 20200377910
    Abstract: The present invention provides a method of modifying a targeted site of a double-stranded DNA, comprising a step of introducing a complex wherein a nucleic acid sequence-recognizing module that specifically binds to a target nucleotide sequence in a double-stranded DNA and PmCDA1 are bonded, into a cell containing the double-stranded DNA, and culturing the cell at a low temperature at least temporarily to convert the targeted site, i.e., the target nucleotide sequence and nucleotides in the vicinity thereof, to other nucleotides, or delete the targeted site, or insert nucleotide into the site.
    Type: Application
    Filed: April 21, 2017
    Publication date: December 3, 2020
    Applicant: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY
    Inventors: Keiji NISHIDA, Akihiko KONDO, Takayuki ARAZOE, Zenpei SHIMATANI
  • Patent number: 10767173
    Abstract: The invention provides a method of modifying a targeted site of gram-positive bacterium of a double stranded DNA. The method includes contacting the double-stranded DNA with a complex of a nucleic acid sequence-recognizing module that specifically binds to a target nucleotide sequence in a given double stranded DNA and a nucleic acid base converting enzyme to convert, delete, or insert one or more nucleotides in the targeted site without cleaving at least one strand of the double stranded DNA in the targeted site, by introducing the nucleic acid encoding the complex into the gram-positive bacterium. The invention also provide a nucleic acid-modifying enzyme complex of a nucleic acid sequence-recognizing module that specifically binds to a target nucleotide sequence in a double stranded DNA of a gram-positive bacterium and a nucleic acid base converting enzyme bonded to each other, which complex is used for the method.
    Type: Grant
    Filed: September 9, 2016
    Date of Patent: September 8, 2020
    Assignees: NATIONAL UNIVERSITY CORPORATION KOBE UNIVERSITY, NIPPON SHOKUBAI CO., LTD.
    Inventors: Masaharu Mukoyama, Eita Ichige, Keiji Nishida, Akihiko Kondo