Patents by Inventor Keisuke Ayabe

Keisuke Ayabe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10672543
    Abstract: A ferrite powder for bonded magnets capable of producing a ferrite bonded magnet having high BHmax, and excellent in fluidity when converted to a compound, and having a high p-iHc value, and a method for producing the same, and a ferrite bonded magnet using the ferrite powder for bonded magnets, wherein an average particle size of particles obtained by a dry laser diffraction measurement is 5 ?m or less; a specific surface area is 1.90 m2/g or more and less than 2.80 m2/g; a compression density is 3.50 g/cm3 or more and less than 3.78 g/cm3, and a compressed molding has a coercive force of 2300 Oe or more and less than 2800 Oe.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: June 2, 2020
    Assignees: DOW A ELECTRONICS MATERIALS CO., LTD., DOW A F-TEC CO., LTD.
    Inventors: Satoru Tsuboi, Yasunobu Mishima, Keisuke Ayabe, Masayasu Senda
  • Patent number: 10665371
    Abstract: A ferrite powder for bonded magnets having a high iHc value usable even in a low temperature environment, a method for producing the same, and a bonded magnet using the ferrite powder and having high iHc value which can be used even in a low temperature environment, wherein a specific surface area is 2.20 m2/g or more and less than 3.20 m2/g; a compression density is 3.30 g/cm3 or more and less than 3.60 g/cm3, and a compressed molding has a coercive force of 3250 Oe or more and less than 3800 Oe.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: May 26, 2020
    Assignees: DOWA ELECTRONICS MATERIALS CO., LTD., DOWA F-TEC CO., LTD.
    Inventors: Satoru Tsuboi, Yasunobu Mishima, Keisuke Ayabe, Masayasu Senda
  • Patent number: 10453596
    Abstract: There is provided a ferrite powder for bonded magnets capable of producing ferrite bonded magnets with high BHmax, excellent in MFR when converted to a compound, with high p-iHc, wherein an average particle size of particles obtained by a dry laser diffraction measurement is 5 ?m or less, a specific surface area is 1.90 m2/g or more and less than 3.00 m2/g, a compression density is 3.40 g/cm3 or more and less than 3.73 g/cm3, and a compressed molding has a coercive force of 2800 Oe or more and less than 3250 Oe.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: October 22, 2019
    Assignees: DOWA ELECTRONICS MATERIALS CO., LTD., DOWA F-TEC CO., LTD.
    Inventors: Satoru Tsuboi, Yasunobu Mishima, Keisuke Ayabe, Masayasu Senda
  • Publication number: 20180244537
    Abstract: A ferrite powder for bonded magnets capable of producing a ferrite bonded magnet having a BHmax value of 2.65 MGOe or more when molded in a magnetic field and a method for producing the same, and a ferrite bonded magnet using the same, wherein a compression density is 3.50 g/cm3 or more, and an average value of a (long axis length/short axis length) ratio of ferrite particles having a long axis length of 1.0 ?m or more is, 1.60 or less.
    Type: Application
    Filed: February 23, 2016
    Publication date: August 30, 2018
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., DOWA F-TEC CO., LTD.
    Inventors: Tomoya YAMADA, Satoru TSUBOI, Keisuke AYABE, Yasunobu MISHIMA, Masayasu SENDA
  • Publication number: 20170316857
    Abstract: There is provided a ferrite powder for bonded magnets capable of producing ferrite bonded magnets with high BHmax, excellent in MFR when converted to a compound, with high p-iHc, wherein an average particle size of particles obtained by a dry laser diffraction measurement is 5 ?m or less, a specific surface area is 1.90 m2/g or more and less than 3.00 m2/g, a compression density is 3.40 g/cm3 or more and less than 3.73 g/cm3, and a compressed molding has a coercive force of 2800 Oe or more and less than 3250 Oe.
    Type: Application
    Filed: September 30, 2015
    Publication date: November 2, 2017
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., DOWA F-TEC CO., LTD.
    Inventors: Satoru TSUBOI, Yasunobu MISHIMA, Keisuke AYABE, Masayasu SENDA
  • Publication number: 20170309381
    Abstract: A ferrite powder for bonded magnets capable of producing a ferrite bonded magnet having high BHmax, and excellent in fluidity when converted to a compound, and having a high p-iHc value, and a method for producing the same, and a ferrite bonded magnet using the ferrite powder for bonded magnets, wherein an average particle size of particles obtained by a dry laser diffraction measurement is 5 ?m or less; a specific surface area is 1.90 m2/g or more and less than 2.80 m2/g; a compression density is 3.50 g/cm3 or more and less than 3.78 g/cm3, and a compressed molding has a coercive force of 2300 Oe or more and less than 2800 Oe.
    Type: Application
    Filed: September 30, 2015
    Publication date: October 26, 2017
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., DOWA F-TEC CO., LTD.
    Inventors: Satoru TSUBOI, Yasunobu MISHIMA, Keisuke AYABE, Masayasu SENDA
  • Publication number: 20170301440
    Abstract: A ferrite powder for bonded magnets having a high iHc value usable even in a low temperature environment, a method for producing the same, and a bonded magnet using the ferrite powder and having high iHc value which can be used even in a low temperature environment, wherein a specific surface area is 2.20 m2/g or more and less than 3.20 m2/g; a compression density is 3.30 g/cm3 or more and less than 3.60 g/cm3, and a compressed molding has a coercive force of 3250 Oe or more and less than 3800 Oe.
    Type: Application
    Filed: September 30, 2015
    Publication date: October 19, 2017
    Applicants: DOWA ELECTRONICS MATERIALS CO., LTD., DOWA F-TEC CO., LTD.
    Inventors: Satoru TSUBOI, Yasunobu MISHIMA, Keisuke AYABE, Masayasu SENDA
  • Patent number: 9460850
    Abstract: To provide ferrite magnetic powders for bond magnet capable of surely suppressing residual hexavalent chrome, being an environmental load substance, having no adverse influence on the magnetic characteristics, which is an obstacle in use, and without damaging productivity and at a low cost. The method includes the steps of obtaining sintered powders by sintering raw material powders; wet-pulverizing the sintered powders; wet-cleaning the sintered powders; and annealing the cleaned sintered powders, wherein in the step of the wet-pulverization and in the step of wet-cleaning, generation of the hexavalent chrome, being an environmental load substance, is suppressed by performing the pulverization and cleaning while maintaining pH of a dispersion solvent at 8.5 or less, at the time of pulverization and cleaning.
    Type: Grant
    Filed: April 17, 2014
    Date of Patent: October 4, 2016
    Assignees: DOWA F-TEC CO., LTD., DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shuichi Kohayashi, Hiroya Ikeda, Hideki Katayama, Keisuke Ayabe
  • Patent number: 8986181
    Abstract: Provided is a module for automatic tool exchange device of novel structure wherein electric signals can be transmitted with high reliability while preventing transmission efficiency from deteriorating between a first coupling member and a second coupling member. An electromagnetic shielding member is arranged on an outer circumference of a core member except for a transmission surface, a gap member having electromagnetic shielding effect lower than that of the electromagnetic shielding member is interposed between the core member and the electromagnetic shielding member, and a first module and a second module are provided, respectively, with coil units equipped with coil heads which are constituted to include a coil member, the core member and the gap member.
    Type: Grant
    Filed: July 23, 2009
    Date of Patent: March 24, 2015
    Assignees: Mie Electronics Co., Ltd., Honda Motor Co., Ltd.
    Inventors: Shuhei Takazakura, Atsushi Deguchi, Shinya Sasaki, Toshikazu Mukai, Tomimasa Yamashita, Shinji Yahiro, Atsushi Miyabe, Keisuke Ayabe, Takashi Fujimura
  • Patent number: 8951635
    Abstract: A bonded magnet is required to have a large energy product, which is the product of magnetization Br and coercive force Hc. However, in a ferrite powder for a bonded magnet, when the particle diameter is reduced to improve the coercive force, the packing properties are impaired, and the Br is lowered. When the particle diameter is increased to improve the magnetization, the coercive force is lowered. Therefore, to increase the energy product, both the Br and Hc must be increased. A ferrite powder that has a large particle size, is composed of smooth crystals, and suffers only a small reduction in coercive force even after pressurization is obtained by mixing a fine ferrite powder having a small particle size with a ferrite powder calcined at a temperature of 1050° C. to 1300° C. in the presence of a chloride at its saturated vapor pressure and then annealing the mixture at 800° C. to 1100° C. A bonded magnet produced using the powder has an energy product of 2.0 MGOe or more.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: February 10, 2015
    Assignee: Dowa Electronics Materials Co., Ltd.
    Inventors: Shinichi Suenaga, Kouji Hirata, Satoru Tsuboi, Keisuke Ayabe, Kazuyosi Horii
  • Publication number: 20140225316
    Abstract: To provide ferrite magnetic powders for bond magnet capable of surely suppressing residual hexavalent chrome, being an environmental load substance, having no adverse influence on the magnetic characteristics, which is an obstacle in use, and without damaging productivity and at a low cost. The method includes the steps of obtaining sintered powders by sintering raw material powders; wet-pulverizing the sintered powders; wet-cleaning the sintered powders; and annealing the cleaned sintered powders, wherein in the step of the wet-pulverization and in the step of wet-cleaning, generation of the hexavalent chrome, being an environmental load substance, is suppressed by performing the pulverization and cleaning while maintaining pH of a dispersion solvent at 8.5 or less, at the time of pulverization and cleaning.
    Type: Application
    Filed: April 17, 2014
    Publication date: August 14, 2014
    Applicants: DOWA F-TEC CO., LTD., DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shuichi KOHAYASHI, Hiroya IKEDA, Hideki KATAYAMA, Keisuke AYABE
  • Publication number: 20120015189
    Abstract: A bonded magnet is required to have a large energy product, which is the product of magnetization Br and coercive force Hc. However, in a ferrite powder for a bonded magnet, when the particle diameter is reduced to improve the coercive force, the packing properties are impaired, and the Br is lowered. When the particle diameter is increased to improve the magnetization, the coercive force is lowered. Therefore, to increase the energy product, both the Br and Hc must be increased. A ferrite powder that has a large particle size, is composed of smooth crystals, and suffers only a small reduction in coercive force even after pressurization is obtained by mixing a fine ferrite powder having a small particle size with a ferrite powder calcined at a temperature of 1050° C. to 1300° C. in the presence of a chloride at its saturated vapor pressure and then annealing the mixture at 800° C. to 1100° C. A bonded magnet produced using the powder has an energy product of 2.0 MGOe or more.
    Type: Application
    Filed: April 9, 2010
    Publication date: January 19, 2012
    Applicant: DOWA Electronics Materials Co., Ltd.
    Inventors: Shinichi Suenaga, Kouji Hirata, Satoru Tsuboi, Keisuke Ayabe, Kazuyosi Horii
  • Publication number: 20110256995
    Abstract: Provided is a module for automatic tool exchange device of novel structure wherein electric signals can be transmitted with high reliability while preventing transmission efficiency from deteriorating between a first coupling member and a second coupling member. An electromagnetic shielding member is arranged on an outer circumference of a core member except for a transmission surface, a gap member having electromagnetic shielding effect lower than that of the electromagnetic shielding member is interposed between the core member and the electromagnetic shielding member, and a first module and a second module are provided, respectively, with coil units equipped with coil heads which are constituted to include a coil member, the member and the gap member.
    Type: Application
    Filed: July 23, 2009
    Publication date: October 20, 2011
    Applicants: HONDA MOTOR CO., LTD., MIE ELECTRONICS CO., LTD.
    Inventors: Shuhei Takazakura, Atsushi Deguchi, Shinya Sasaki, Toshikazu Mukai, Tomimasa Yamashita, Shinji Yahiro, Atsushi Miyabe, Keisuke Ayabe, Takashi Fujimura
  • Publication number: 20100230630
    Abstract: To provide ferrite magnetic powders for bond magnet capable of surely suppressing residual hexavalent chrome, being an environmental load substance, having no adverse influence on the magnetic characteristics, which is an obstacle in use, and without damaging productivity and at a low cost. The method includes the steps of obtaining sintered powders by sintering raw material powders; wet-pulverizing the sintered powders; wet-cleaning the sintered powders; and annealing the cleaned sintered powders, wherein in the step of the wet-pulverization and in the step of wet-cleaning, generation of the hexavalent chrome, being an environmental load substance, is suppressed by performing the pulverization and cleaning while maintaining pH of a dispersion solvent at 8.5 or less, at the time of pulverization and cleaning.
    Type: Application
    Filed: March 6, 2007
    Publication date: September 16, 2010
    Applicants: DOWA F-TEC CO., LTD., DOWA ELECTRONICS MATERIALS CO., LTD.
    Inventors: Shuichi Kohayashi, Hiroya Ikeda, Hideki Katayama, Keisuke Ayabe
  • Patent number: 7384571
    Abstract: A ferrite magnetic powder for bond magnet that experiences only small decrease in coercivity when molded into a bond magnet is provided, which is a ferrite magnetic powder that includes an alkaline-earth metal constituent and exhibits a decrease in coercivity of not greater than 600 Oe when subjected to a prescribed molding test. The magnetic powder can be obtained by mixing a fine ferrite powder of an average particle diameter of greater than 0.50 to 1.0 ?m and a coarse ferrite powder of an average particle diameter of greater than 2.50 to 5.0 ?m at ratio to incorporate the fine powder at a content ratio of 15-40 wt %.
    Type: Grant
    Filed: February 6, 2007
    Date of Patent: June 10, 2008
    Assignees: Dowa Electronics Materials Co., Ltd., Nippon Bengara Kogyo Co., Ltd.
    Inventors: Masayasu Senda, Shinichi Suenaga, Keisuke Ayabe, Toshiyuki Sakai
  • Patent number: 7255807
    Abstract: A ferrite magnetic powder for bond magnet that experiences only small decrease in coercivity when molded into a bond magnet is provided, which is a ferrite magnetic powder that includes an alkaline-earth metal constituent and exhibits a decrease in coercivity of not greater than 600 Oe when subjected to a prescribed molding test. The magnetic powder can be obtained by mixing a fine ferrite powder of an average particle diameter of greater than 0.50 to 1.0 ?m and a coarse ferrite powder of an average particle diameter of greater than 2.50 to 5.0 ?m at ratio to incorporate the fine powder at a content ratio of 15-40 wt %.
    Type: Grant
    Filed: April 22, 2004
    Date of Patent: August 14, 2007
    Assignee: Dowa Mining Co., Ltd.
    Inventors: Masayasu Senda, Shinichi Suenaga, Keisuke Ayabe, Toshiyuki Sakai
  • Publication number: 20070131893
    Abstract: A ferrite magnetic powder for bond magnet that experiences only small decrease in coercivity when molded into a bond magnet is provided, which is a ferrite magnetic powder that includes an alkaline-earth metal constituent and exhibits a decrease in coercivity of not greater than 600 Oe when subjected to a prescribed molding test. The magnetic powder can be obtained by mixing a fine ferrite powder of an average particle diameter of greater than 0.50 to 1.0 ?m and a coarse ferrite powder of an average particle diameter of greater than 2.50 to 5.0 ?m at ratio to incorporate the fine powder at a content ratio of 15-40 wt %.
    Type: Application
    Filed: February 6, 2007
    Publication date: June 14, 2007
    Inventors: Masayasu Senda, Shinichi Suenaga, Keisuke Ayabe, Toshiyuki Sakai
  • Publication number: 20040212472
    Abstract: A ferrite magnetic powder for bond magnet that experiences only small decrease in coercivity when molded into a bond magnet is provided, which is a ferrite magnetic powder that includes an alkali-earth metal constituent and exhibits a decrease in coercivity of not greater than 600 Oe when subjected to a prescribed molding test. The magnetic powder can be obtained by mixing a fine ferrite powder of an average particle diameter of greater than 0.50 to 1.0 &mgr;m and a coarse ferrite powder of an average particle diameter of greater than 2.50 to 5.0 &mgr;m at ratio to incorporate the fine powder at a content ratio of 15-40 wt %.
    Type: Application
    Filed: April 22, 2004
    Publication date: October 28, 2004
    Inventors: Masayasu Senda, Shinichi Suenaga, Keisuke Ayabe, Toshiyuki Sakai