Patents by Inventor Keisuke Hirano
Keisuke Hirano has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9039920Abstract: There are provided a permanent magnet and a manufacturing method thereof enabling carbon content contained in magnet particles to be reduced in advance before sintering even when wet milling is employed. Coarsely-milled magnet powder is further milled by a bead mill in a solvent together with an organometallic compound expressed with a structural formula of M-(OR)X (M represents V, Mo, Zr, Ta Ti W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the magnet powder. Thereafter, a compact body of compacted magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius to perform hydrogen calcination process. Thereafter, through sintering process, a permanent magnet 1 is formed.Type: GrantFiled: March 28, 2011Date of Patent: May 26, 2015Assignee: NITTO DENKO CORPORATIONInventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
-
Patent number: 9005374Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of decreasing an activity level of a calcined body activated by a calcination process. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, desiccated magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, the powdery calcined body calcined through the calcination process in hydrogen is held for several hours in vacuum atmosphere at 200 through 600 degrees Celsius for a dehydrogenation process.Type: GrantFiled: March 28, 2011Date of Patent: April 14, 2015Assignee: Nitto Denko CorporationInventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
-
Publication number: 20150062896Abstract: The flame-retardant silicone resin composition of the present invention comprises: an inorganic oxide particle-containing condensation-reactive silicone resin (A) comprising a crosslinking structure in which inorganic oxide particles dispersed in a polysiloxane resin having a condensation-reactive group are crosslinked with the polysiloxane resin by chemical bonds; and inorganic particles (B). The inorganic oxide particles are preferably at least one type of inorganic oxide particles selected from the group consisting of silica, alumina, glass frit, and antimony-doped tin oxide.Type: ApplicationFiled: April 9, 2013Publication date: March 5, 2015Applicant: NITTO DENKO CORPORATIONInventors: Kohei Doi, Kunio Nagasaki, Yusuke Sugino, Takafumi Hida, Yusuke Nakayama, Keisuke Hirano
-
Patent number: 8883922Abstract: Provided are a pressure-sensitive adhesive composition that is produced with no tin compound, has a sufficiently long pot life, and can be rapidly crosslinked in the process of forming a pressure-sensitive adhesive layer; and a pressure-sensitive adhesive layer and a pressure-sensitive adhesive sheet each produced using such a pressure-sensitive adhesive composition. A pressure-sensitive adhesive composition, comprising: 100 parts by weight of an acrylic polymer (A) having an active hydrogen-containing functional group; 0.1 parts by weight to 10 parts by weight of an isocyanate crosslinking agent (B); 0.002 parts by weight to 0.5 parts by weight of a catalyst (C) having an iron active center; and a compound (D) capable of undergoing keto-enol tautomerism, wherein the weight ratio (D/C) of the compound (D) capable of undergoing keto-enol tautomerism to the catalyst (C) having an iron active center is from 3 to 70.Type: GrantFiled: December 19, 2012Date of Patent: November 11, 2014Assignee: Nitto Denko CorporationInventors: Toru Iseki, Keisuke Hirano
-
Publication number: 20140301090Abstract: There is provided a flame-resistant composite member exhibiting remarkably high flame resistance even if having a flammable base material. The flame-resistant composite member according to the present invention has a film formed of a silicone resin composition (C) containing at least an inorganic oxide particle-containing condensation-reactive silicone resin on at least one surface of a base material. The inorganic oxide particle-containing condensation-reactive silicone resin may be a condensation-reactive silicone resin (A) including a crosslinked structural body wherein an inorganic oxide particle dispersed in a polysiloxane resin having a condensation-reactive group and the polysiloxane resin are crosslinked through a chemical bond. The silicone resin composition (C) may contain the condensation-reactive silicone resin (A) and an inorganic particle (B).Type: ApplicationFiled: November 13, 2012Publication date: October 9, 2014Inventors: Kohei Doi, Kunio Nagasaki, Yusuke Sugino, Takafumi Hida, Yusuke Nakayama, Keisuke Hirano
-
Publication number: 20140287225Abstract: The present invention provides a transparent heat-resistant non-flammable film that has high transparency, heat resistance, and flame retardancy. The transparent heat-resistant non-flammable film according to the present invention includes a transparent heat-resistant protective layer comprising a polysiloxane resin containing a particulate inorganic oxide as a crosslinking agent on at least one surface of a transparent amorphous thermoplastic resin film having a heat distortion temperature of 250° C. or less. The transparent heat-resistant protective layer preferably has a refractive index in the range of 1.40 to 1.43. The transparent heat-resistant protective layer preferably has a thickness in the range of 1 to 100 ?m.Type: ApplicationFiled: October 31, 2012Publication date: September 25, 2014Applicant: NITTO DENKO CORPORATIONInventors: Keisuke Hirano, Kohei Doi, Yusuke Sugino, Shigeki Ishiguro
-
Publication number: 20140247486Abstract: There is provided an optical laminate excellent which secures adhesiveness between the (meth)acrylic resin film (base material film) and a hard coat layer, and can prevent a reduction in scratch resistance. An optical laminate according to an embodiment of the present invention includes: a base material layer formed of a (meth)acrylic resin film; a hard coat layer formed by applying, to the (meth)acrylic resin film, a composition for forming a hard coat layer containing a curable compound and inorganic nanoparticles; and a penetration layer having a thickness of 1.2 ?m or more, the penetration layer being formed between the base material layer and the hard coat layer by penetration of the composition for forming a hard coat layer into the (meth)acrylic resin film, wherein a content of the inorganic nanoparticles is 1.5 wt % to 50 wt % with respect to a total of the curable compound and the inorganic nanoparticles.Type: ApplicationFiled: April 18, 2012Publication date: September 4, 2014Applicant: NITTO DENKO CORPORATIONInventors: Shusaku Shibata, Katsunori Takada, Hiroyuki Takemoto, Keisuke Hirano
-
Patent number: 8673444Abstract: The present invention relates to an acrylic pressure-sensitive adhesive resin composition including an organic-inorganic hybrid polymer synthesized from the following (a) to (d): (a) fine silica particles having silanol groups on a surface thereof; (b) a siloxane having at least one selected from a group consisting of an alkoxysilyl group and a silanol group at a molecular end thereof; (c) a trialkoxysilane represented by the following general formula (I) in which R1 represents a C1-6 alkyl group, and R1? represents a hydrogen atom or a methyl group; and (d) a (meth)acrylic monomer:Type: GrantFiled: January 31, 2011Date of Patent: March 18, 2014Assignee: Nitto Denko CorporationInventors: Keisuke Hirano, Yutaka Moroishi
-
Patent number: 8519559Abstract: Provided are a spiral type membrane element that can re-collect the electric power that is used in a good manner, and a spiral type membrane filtering device having the same. The spiral type membrane element comprises a power generating section that generates electric power by using a liquid, and an electric power outputting section that outputs, either in a wired manner or in a wireless manner, the electric power supplied from said power generating section. The electric power that is generated in the power generating section using the liquid (raw water, permeated water, or concentrated water) can be output from the electric power outputting section in a wired manner or in a wireless manner. Therefore, the electric power that is output from the aforesaid electric power outputting section can be used in an electric component disposed outside or can be stored into a capacitor section disposed outside.Type: GrantFiled: December 16, 2008Date of Patent: August 27, 2013Assignee: Nitto Denko CorporationInventors: Takahisa Konishi, Kouji Maruyama, Toshiki Kouno, Keisuke Hirano, Akira Ootani, Hiroshi Yoshikawa, Norio Ikeyama
-
Patent number: 8500921Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of densely sintering the entirety of the magnet without making a gap between a main phase and a grain boundary phase in the sintered magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, desiccated magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, the powdery calcined body calcined through the calcination process in hydrogen is held for several hours in vacuum atmosphere at 200 through 600 degrees Celsius for a dehydrogenation process.Type: GrantFiled: March 28, 2011Date of Patent: August 6, 2013Assignee: Nitto Denko CorporationInventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
-
Patent number: 8500920Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of densely sintering the entirety of the magnet without making a gap between a main phase and a grain boundary phase in the sintered magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)X (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body formed through powder compaction is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, through sintering process, a permanent magnet is manufactured.Type: GrantFiled: March 28, 2011Date of Patent: August 6, 2013Assignee: Nitto Denko CorporationInventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
-
Patent number: 8491728Abstract: There are provided a permanent magnet and a manufacturing method thereof that enables concentration of V, Mo, Zr, Ta, Ti, W or Nb contained in an organometallic compound in grain boundaries of the permanent magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (M represents V, Mo, Zr, Ta, Ti, W or Nb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body obtained by compacting the magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius so as to perform a calcination process in hydrogen. Thereafter, through sintering, a permanent magnet is manufactured.Type: GrantFiled: March 28, 2011Date of Patent: July 23, 2013Assignee: Nitto Denko CorporationInventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
-
Patent number: 8480816Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of preventing degrade in the magnetic properties by densely sintering the entirety of the magnet. To fine powder of milled neodymium magnet is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)X (M represents Dy or Tb, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, X represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, the desiccated magnet powder is calcined by utilizing plasma heating and the powdery calcined body is sintered so as to form a permanent magnet 1.Type: GrantFiled: March 28, 2011Date of Patent: July 9, 2013Assignee: Nitto Denko CorporationInventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
-
Patent number: 8480818Abstract: There are provided a permanent magnet and a manufacturing method thereof capable of preventing grain growth in a main phase and enabling rare-earth rich phase to be uniformly dispersed. To fine powder of milled neodymium magnet material is added an organometallic compound solution containing an organometallic compound expressed with a structural formula of M-(OR)x (in the formula, M represents Cu or Al, R represents a substituent group consisting of a straight-chain or branched-chain hydrocarbon, x represents an arbitrary integer) so as to uniformly adhere the organometallic compound to particle surfaces of the neodymium magnet powder. Thereafter, a compact body formed by compacting the above neodymium magnet powder is held for several hours in hydrogen atmosphere at 200 through 900 degrees Celsius. Thereafter, through a sintering process, a permanent magnet is manufactured.Type: GrantFiled: March 28, 2011Date of Patent: July 9, 2013Assignee: Nitto Denko CorporationInventors: Izumi Ozeki, Katsuya Kume, Keisuke Hirano, Tomohiro Omure, Keisuke Taihaku, Takashi Ozaki
-
Publication number: 20130141907Abstract: There is provided a light diffusing flame-resistant composite member which has both flame resistance and flexibility and has excellent light diffusibility. The light diffusing flame-resistant composite member of the present invention includes a glass fiber sheet and a condensation-reactive silicone resin, wherein at least one surface of the glass fiber sheet is coated with the condensation-reactive silicone resin, or the glass fiber sheet is impregnated with the condensation-reactive silicone resin, and wherein the composite member has a total light transmittance of 60% or more and a haze value of 80% or more. The condensation-reactive silicone resin may be an inorganic oxide particle-containing condensation-reactive silicone resin comprising a crosslinking structure in which inorganic oxide particles dispersed in a polysiloxane resin having a condensation-reactive group is crosslinked with the polysiloxane resin by chemical bonds.Type: ApplicationFiled: July 27, 2012Publication date: June 6, 2013Applicant: NITTO DENKO CORPORATIONInventors: Kohei Doi, Kunio Nagasaki, Yusuke Sugino, Takafumi Hida, Yusuke Nakayama, Keisuke Hirano
-
Publication number: 20130065987Abstract: A thermal conductive sheet has a peeling adhesive force with respect to a copper foil of 2 N/10 mm or more, a thermal conductivity in a thickness direction (TC1) of 4 W/m·K or more, a thermal conductivity in a direction perpendicular to the thickness direction (TC2) of 20 W/m·K or more, and a ratio (TC2/TC1) of the thermal conductivity in a direction perpendicular to the thickness direction (TC2) with respect to the thermal conductivity in the thickness direction (TC1) of 3 or more.Type: ApplicationFiled: September 12, 2012Publication date: March 14, 2013Applicant: NITTO DENKO CORPORATIONInventors: Saori Fukuzaki, Keisuke Hirano, Seiji Izutani
-
Publication number: 20130040135Abstract: There are provided a silicone resin sheet having high heat resistance and strength and being excellent in flexibility, and a pressure-sensitive adhesive sheet having excellent anchoring, force and excellent moisture resistance. The inorganic oxide particle-containing silicone resin sheet according to the present invention includes a silicone resin composition containing a crosslinked structure in which an inorganic oxide particle dispersed in a polysiloxane resin and the polysiloxane resin are crosslinked through a chemical bond, and has a tensile elongation of 5 to 15%.Type: ApplicationFiled: August 8, 2012Publication date: February 14, 2013Applicant: NITTO DENKO CORPORATIONInventor: Keisuke HIRANO
-
Patent number: 8329290Abstract: A silicone resin composition containing (i) a silicone resin and (ii) fine metal oxide particles without having a reactive functional group or with a protected reactive functional group on the surface thereof (fine metal oxide particles B), wherein the silicone resin is obtained by carrying out a polymerization reaction between a silicone derivative having an alkoxysilyl group at an end of a molecule and a molecular weight of from 200 to 3000, and fine metal oxide particles having a reactive functional group on the surface thereof (fine metal oxide particles A), and wherein the fine metal oxide particles B are dispersed in the silicone resin (Embodiment 1); a silicone resin.Type: GrantFiled: December 16, 2009Date of Patent: December 11, 2012Assignee: Nitto Denko CorporationInventor: Keisuke Hirano
-
Publication number: 20120309885Abstract: A silicone resin composition contains a borosiloxane resin containing a B—O—Si bond and boron nitride. A silicone resin composition contains an aluminosiloxane resin containing an Al—O—Si bond and aluminum nitride.Type: ApplicationFiled: June 5, 2012Publication date: December 6, 2012Applicant: NITTO DENKO CORPORATIONInventor: Keisuke HIRANO
-
Publication number: 20120286194Abstract: A thermal conductive sheet contains a resin and a filler. The filler contains a plate-like or flake-like first filler and a block-like or sphere-like second filler, and the average orientation angle of the first filler is 28 degrees or more and the maximum orientation angle thereof is 60 degrees or more with respect to the plane direction of the thermal conductive sheet.Type: ApplicationFiled: May 11, 2012Publication date: November 15, 2012Applicant: NITTO DENKO CORPORATIONInventor: Keisuke HIRANO