Patents by Inventor Keisuke IWADO

Keisuke IWADO has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240141985
    Abstract: In a vehicle control device for controlling the vehicle, when automatic downshift control for automatically downshifting a speed ratio of the transmission is executed in the case where a drive current value of the motor obtained when the second oil pump is driven is larger than a maximum value of the drive current value of the motor obtained when the second oil pump is driven in a normal drive state, the vehicle control device increases a minimum rotation speed of the drive source compared to a case where the drive current value of the motor is equal to or less than the maximum value, and when the automatic downshift control is executed in the case where a line pressure generated by a hydraulic pressure supplied from the first oil pump and the second oil pump is larger than a predetermined value, the vehicle control device does not increase the minimum rotation speed of the drive source even in the case where the drive current value of the motor obtained when the second oil pump is driven is larger than the m
    Type: Application
    Filed: February 25, 2022
    Publication date: May 2, 2024
    Applicants: JATCO Ltd, NISSAN MOTOR CO., LTD.
    Inventors: Tarou MURAZUMI, Hajime TASAKA, Keisuke IWADO, Hiroyuki TOKOI, Yuji OISHI
  • Publication number: 20240133463
    Abstract: Provided is a control device for a vehicle including a first oil pump that is driven by a first drive source driving a drive wheel of a vehicle and configured to supply oil to a hydraulic pressure actuation machine, and a second oil pump that is driven by a second drive source different from the first drive source and configured to supply oil to the hydraulic pressure actuation machine. The control device drives the second oil pump when a start switch of the vehicle is turned on and the first drive source is started for the first time, and drives the second oil pump when the second oil pump is not driven for a first predetermined time after the first drive source is started, and a rotation speed of the second oil pump when the first drive source is started is lower than a rotation speed of the second oil pump after the first drive source is started.
    Type: Application
    Filed: February 16, 2022
    Publication date: April 25, 2024
    Applicants: JATCO Ltd, NISSAN MOTOR CO., LTD.
    Inventors: Koichi OKUNO, Keisuke IWADO, Makoto OGURI
  • Publication number: 20240052857
    Abstract: A hydraulic control device for a hydraulic actuation machine including a main oil pump configured to supply oil to the hydraulic actuation machine, a sub oil pump configured to temporarily supply oil to the hydraulic actuation machine based on a drive request so as to compensate for an oil shortfall when supply of oil from the main oil pump to the hydraulic actuation machine is stopped or insufficient, and a drive unit configured to drive the sub oil pump, wherein when an elapsed time elapsed from a time point when the sub oil pump is driven reaches a predetermined time, the hydraulic control device generates an air discharge command for discharging air accumulated in the sub oil pump and outputs the air discharge command to the drive unit, and the drive unit drives the sub oil pump to discharge the air accumulated in the sub oil pump based on the output air discharge command.
    Type: Application
    Filed: November 26, 2021
    Publication date: February 15, 2024
    Applicants: JATCO Ltd, NISSAN MOTOR CO., LTD.
    Inventors: Yuji OISHI, Keisuke IWADO, Hiroyuki TOKOI, Masanori SATOU
  • Patent number: 10502314
    Abstract: An oil pump driving control device of a vehicle having a main oil pump (14) that is driven by a motor/generator (4) and produces a pump discharge oil to a first clutch (3), a second clutch (5) and a belt-type continuously variable transmission (6) provided on a driving force transmission line. A hybrid control module (81) is provided in this FF hybrid vehicle. The hybrid control module (81) is configured to perform a control so that during vehicle stop, the lower an ATF oil temperature is, the more the pump driving energy to drive the main oil pump (14) is decreased. With this control, consumption energy during the vehicle stop can be reduced.
    Type: Grant
    Filed: March 3, 2016
    Date of Patent: December 10, 2019
    Assignee: JATCO LTD
    Inventors: Takanobu Mouri, Taiichi Onoyama, Seishi Shimamura, Kakuzou Kaneko, Akihiro Toyofuku, Ryuichi Arai, Ryuzo Noguchi, Satoshi Harui, Hironori Miyaishi, Tomoyuki Mizuochi, Kenichi Watanabe, Masumi Fujikawa, Kouichi Kotsuji, Shingo Suzuki, Akito Suzuki, Tetsuya Izumi, Keisuke Iwado, Kazuhiro Miyachi
  • Patent number: 10377368
    Abstract: A controller is provided so as to control, when an electric vehicle (EV) mode is selected, a belt clamping pressure on the basis of discharged oil from a main oil pump which is driven by a motor generator. The controller is provided for a hybrid vehicle and is configured to perform control such that when the vehicle is stopped in the EV mode and a creep cut condition which does not require creep torque from the motor generator is met, a first motor idling rotation speed is set as a motor rotation speed. When the vehicle is stopped in the EV mode and a standby learning control completes learning of a zero-point oil pressure command value, the controller reduces a rotation speed of the motor generator to a second motor idling rotation speed which is lower than the first motor idling rotation speed.
    Type: Grant
    Filed: February 3, 2016
    Date of Patent: August 13, 2019
    Assignees: JATCO LTD, NISSAN MOTOR CO., LTD.
    Inventors: Hironori Miyaishi, Tomoyuki Mizuochi, Kenichi Watanabe, Masumi Fujikawa, Kouichi Kotsuji, Shingo Suzuki, Akito Suzuki, Tetsuya Izumi, Keisuke Iwado, Takanobu Mouri, Taiichi Onoyama, Seishi Shimamura, Akihiro Toyofuku, Ryuichi Arai, Kakuzou Kaneko, Ryuzo Noguchi, Satoshi Harui
  • Publication number: 20180072308
    Abstract: It controls, when EV mode is selected, belt clamping pressure on the basis of discharged oil from a main oil pump (14) which is driven by a motor generator (4). This control device for a FF hybrid vehicle is provided with a motor controller (83) that performs control such that when a vehicle is stopped in EV mode and a creep cut condition which does not require creep torque from the motor generator (4) is met, a first motor idling rotation speed Nma1 is set as a motor rotation speed. When the vehicle is stopped in EV mode and a standby learning controlling means completes learning of a zero-point oil pressure command value, the motor controller (83) reduces the rotation speed of the motor generator (4) to a second motor idling rotation speed Nma2 which is lower than the first motor idling rotation speed Nma1.
    Type: Application
    Filed: February 3, 2016
    Publication date: March 15, 2018
    Applicants: JATCO Ltd, NISSAN MOTOR CO., LTD.
    Inventors: Hironori MIYAISHI, Tomoyuki MIZUOCHI, Kenichi WATANABE, Masumi FUJIKAWA, Kouichi KOTSUJI, Shingo SUZUKI, Akito SUZUKI, Tetsuya IZUMI, Keisuke IWADO, Takanobu MOURI, Taiichi ONOYAMA, Seishi SHIMAMURA, Akihiro TOYOFUKU, Ryuichi ARAI, Kakuzou KANEKO, Ryuzo NOGUCHI, Satoshi HARUI
  • Publication number: 20180073628
    Abstract: An oil pump driving control device of a vehicle having a main oil pump (14) that is driven by a motor/generator (4) and produces a pump discharge oil to a first clutch (3), a second clutch (5) and a belt-type continuously variable transmission (6) provided on a driving force transmission line. A hybrid control module (81) is provided in this FF hybrid vehicle. The hybrid control module (81) is configured to perform a control so that during vehicle stop, the lower an ATF oil temperature is, the more the pump driving energy to drive the main oil pump (14) is decreased. With this control, consumption energy during the vehicle stop can be reduced.
    Type: Application
    Filed: March 3, 2016
    Publication date: March 15, 2018
    Applicant: JATCO Ltd
    Inventors: Takanobu MOURI, Taiichi ONOYAMA, Seishi SHIMAMURA, Kakuzou KANEKO, Akihiro TOYOFUKU, Ryuichi ARAI, Ryuzo NOGUCHI, Satoshi HARUI, Hironori MIYAISHI, Tomoyuki MIZUOCHI, Kenichi WATANABE, Masumi FUJIKAWA, Kouichi KOTSUJI, Shingo SUZUKI, Akito SUZUKI, Tetsuya IZUMI, Keisuke IWADO, Kazuhiro MIYACHI