Patents by Inventor Keith A. Blanks
Keith A. Blanks has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 10897264Abstract: An analog signal processing module includes a processor and a comparator circuit module having a comparator circuit input and a comparator circuit output, the comparator circuit module being configured to receive a first analog signal at the comparator circuit input and generate a digital output, wherein the comparator circuit output is connected to the processor. A digital-to-analog converter (DAC) module is configured to receive a digital output from the processor and convert the digital output to a second analog signal. An operational amplifier (OpAmp) circuit module has an OpAmp circuit input and an OpAmp circuit output, the OpAmp circuit module being configured to receive the second analog signal at the OpAMp circuit input. A feedback loop is formed by the processor, the DAC module, and the OpAMp circuit module, and is configured to implement an amplification function or attenuation function performed by the OpAmp circuit module.Type: GrantFiled: June 24, 2019Date of Patent: January 19, 2021Assignee: BOOZ ALLEN HAMILTON INC.Inventor: Keith A. Blanks
-
Publication number: 20200403631Abstract: An analog signal processing module includes a processor and a comparator circuit module having a comparator circuit input and a comparator circuit output, the comparator circuit module being configured to receive a first analog signal at the comparator circuit input and generate a digital output, wherein the comparator circuit output is connected to the processor. A digital-to-analog converter (DAC) module is configured to receive a digital output from the processor and convert the digital output to a second analog signal. An operational amplifier (OpAmp) circuit module has an OpAmp circuit input and an OpAmp circuit output, the OpAmp circuit module being configured to receive the second analog signal at the OpAMp circuit input. A feedback loop is formed by the processor, the DAC module, and the OpAMp circuit module, and is configured to implement an amplification function or attenuation function performed by the OpAmp circuit module.Type: ApplicationFiled: June 24, 2019Publication date: December 24, 2020Applicant: BOOZ ALLEN HAMILTON INC.Inventor: Keith A. Blanks
-
Patent number: 10353194Abstract: An optical communication system having a data transmitter which includes: at least one optical emission device to output light energy as an optical beam having an operating bandwidth; a beam dividing device to receive and divide the operating bandwidth into plural communication bands; a frequency presence modulation unit to: spectrally segregate the bandwidth of at least one communication band into plural channels, and modulate the bandwidth to selectively produce an optical output signal with wavelengths that correspond to one or more of the channels, wherein presence and absence of energy within channels constitute an information packet for data communication; a controller for providing a control signal to the frequency presence modulation unit to spectrally segregate the bandwidth of the at least one communication band into the plural channels; and a telescope to transmit the optical output signal.Type: GrantFiled: December 29, 2016Date of Patent: July 16, 2019Assignee: BOOZ ALLEN HAMILTON INC.Inventor: Keith A. Blanks
-
Patent number: 10341019Abstract: An optical communication system that includes a data transmitter which includes: at least one ultraviolet laser source configured to output ultraviolet light energy as an optical beam having an operating bandwidth with at least one communication band; a frequency presence modulation unit including at least one optical component having an ultraviolet coating, the frequency presence modulation unit being configured to: spectrally segregate the bandwidth of the at least one communication band into plural channels, and modulate the bandwidth to selectively produce an ultraviolet optical output signal with wavelengths that correspond to one or more of the channels, wherein a presence and absence of energy within channels of the communication band will constitute an information packet for data communication; and a controller for providing a control signal to the frequency presence modulation unit to spectrally segregate the bandwidth of the at least one communication band into the plural channels.Type: GrantFiled: June 26, 2018Date of Patent: July 2, 2019Assignee: BOOZ ALLEN HAMILTON INC.Inventor: Keith A. Blanks
-
Patent number: 10256916Abstract: An apparatus for transmitting and receiving encoded optical signals having a data transmitter including: an optical emission device to output light energy as an optical beam having an operating bandwidth; a beam dividing device to receive and divide the operating bandwidth into plural communication bands; a frequency presence modulation unit to: spectrally segregate the bandwidth of at least one communication band into plural channels, and modulate the bandwidth to selectively produce an optical output signal with wavelengths that correspond to one or more of the channels, wherein presence and absence of energy within channels constitute an information packet for data communication; an optical pathway for bi-directional optical communication over a common optical path for transmitting the optical output signal and for receiving an optical input signal; and a data receiver to receive the optical output signal from the optical pathway.Type: GrantFiled: March 31, 2017Date of Patent: April 9, 2019Assignee: BOOZ ALLEN HAMILTON INC.Inventor: Keith A. Blanks
-
Patent number: 10142030Abstract: An optical communication system that includes a data transmitter. The data transmitter includes at least one optical emission device configured to output light energy as an optical beam having an operating bandwidth; a beam dividing device arranged to receive and divide the operating bandwidth of the optical beam into bandwidth portions of plural communication bands; a focusing grating; and a digital mirror array having a plurality of digital mirrors. In an imaging mode, the optical communication system is configured to perform hyperspectral imaging by setting all of the plurality of digital mirrors to positions that transmit all wavelengths of a communication band among the plural communication bands to the focusing grating.Type: GrantFiled: December 7, 2017Date of Patent: November 27, 2018Assignee: BOOZ ALLEN HAMILTON INC.Inventors: Keith A. Blanks, Jason Aspiotis
-
Patent number: 10050715Abstract: An optical communication system includes a data transmitter. The data transmitter includes at least one optical emission device to output light energy as an optical beam having an operating bandwidth; a beam dividing device arranged to divide the operating bandwidth of the optical beam into bandwidth portions of plural communication bands; an array of graphene switches to: spectrally segregate a bandwidth portion of at least one communication band into plural channels by adjusting at least one graphene switch, and modulate the bandwidth portion to selectively produce an optical output signal with wavelengths that correspond to one or more of the channels, wherein a presence and absence of energy within channels of the communication band will constitute an information packet for data communication. The system includes a focusing grating to receive and focus a first set of wavelengths of the optical output signal reflected by the array of graphene switches.Type: GrantFiled: December 18, 2017Date of Patent: August 14, 2018Assignee: BOOZ ALLEN HAMILTON INC.Inventors: Keith A. Blanks, Jason Aspiotis
-
Publication number: 20180191445Abstract: An optical communication system having a data transmitter which includes: at least one optical emission device to output light energy as an optical beam having an operating bandwidth; a beam dividing device to receive and divide the operating bandwidth into plural communication bands; a frequency presence modulation unit to: spectrally segregate the bandwidth of at least one communication band into plural channels, and modulate the bandwidth to selectively produce an optical output signal with wavelengths that correspond to one or more of the channels, wherein presence and absence of energy within channels constitute an information packet for data communication; a controller for providing a control signal to the frequency presence modulation unit to spectrally segregate the bandwidth of the at least one communication band into the plural channels; and a telescope to transmit the optical output signal.Type: ApplicationFiled: December 29, 2016Publication date: July 5, 2018Applicant: BOOZ ALLEN HAMILTON INC.Inventor: Keith A. Blanks
-
Patent number: 5976325Abstract: A novel laser-induced precipitation process is disclosed for forming purified alumina hydrate from a sodium aluminate solution by illuminating with light wave energy produced by the near infrared wavelength, linearly polarized output of a laser. In one aspect, supersaturated sodium aluminate solution is treated by illuminating with light wave energy to produce a photo-induced nucleation of purified gibbsite aluminum trihydroxide crystals. Near infrared pulses of light wave energy, spatially and temporally overlapped inside the supersaturated sodium alumina, form a precipitated purified alumina hydrate without the need for external seed to be added.Type: GrantFiled: December 12, 1997Date of Patent: November 2, 1999Assignee: Aluminum Company of AmericaInventor: Keith A. Blanks